Phased Array System Toolbox™

Reference

<

MATLAB

R2015a <} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Phased Array System Toolbox™ Reference
© COPYRIGHT 2011-2015 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

Revision History

April 2011 Online only Revised for version 1.0 (Release 2011a)
September 2011 Online only Revised for Version 1.1 (R2011b)
March 2012 Online only Revised for Version 1.2 (R2012a)
September 2012 Online only Revised for Version 1.3 (R2012b)
March 2013 Online only Revised for Version 2.0 (R2013a)
September 2013 Online only Revised for Version 2.1 (R2013b)
March 2014 Online only Revised for Version 2.2 (R2014a)
October 2014 Online only Revised for Version 2.3 (R2014b)

March 2015 Online only Revised for Version 3.0 (R2015a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Alphabetical List

1

Functions-Alphabetical List

2|

Blocks — Alphabetical List

3

4

App Reference

iii

Alphabetical List

1 Alphabetical List

matlab.System class

Package: matlab

Base class for System objects

Description

matlab.Systenm is the base class for System objects. In your class definition file, you
must subclass your object from this base class (or from another class that derives from
this base class). Subclassing allows you to use the implementation and service methods
provided by this base class to build your object. Type this syntax as the first line of
your class definition file to directly inherit from the matlab.System base class, where
ObjectName is the name of your object:

classdef ObjectName < matlab.System

Note: You must set Access = protected for each matlab.System method you use in
your code.

Methods

clonelmpl

Copy System object
getDiscreteStateImpl

Discrete state property values
getNumInputsImpl

Number of inputs to step method
getNumOutputsImpl

Number of outputs from step method
infolmpl

Information about System object

isInactivePropertylmpl
Inactive property status

1-2

matlab.System class

isInputSizeLockedImpl
loadObjectImpl
processTunedPropertiesImpl
releaselmpl

resetImpl

saveObjectImpl
setProperties

setupImpl

stepImpl
validateInputsImpl

validatePropertiesImpl

Attributes

Locked input size status

Load System object from MAT file

Action when tunable properties change
Release resources

Reset System object states

Save System object in MAT file

Set property values using name-value pairs
Initialize System object

System output and state update equations
Validate inputs to step method

Validate property values

In addition to the attributes available for MATLAB® objects, you can apply the following
attributes to any property of a custom System object™.

Nontunable After an object is locked (after step or setup has been
called), use Nontunable to prevent a user from changing
that property value. By default, all properties are tunable.
The Nontunable attribute is useful to lock a property that
has side effects when changed. This attribute is also useful
for locking a property value assumed to be constant during

1-3

1 Alphabetical List

processing. You should always specify properties that affect
the number of input or output ports as Nontunable.

Logical Use Logical to limit the property value to a logical, scalar
value. Any scalar value that can be converted to a logical is
also valid, such as O or 1.

Positivelnteger Use Positivelnteger to limit the property value to a
positive integer value.

DiscreteState Use DiscreteState to mark a property so it will display its
state value when you use the getDiscreteState method.

To learn more about attributes, see “Property Attributes” in the MATLAB Object-
Oriented Programming documentation.

Examples

Create a Basic System Object

Create a simple System object, AddOne, which subclasses from matlab.System. You
place this code into a MATLAB file, AddOne .m.

classdef AddOne < matlab.System
% ADDONE Compute an output value that increments the input by one

methods (Access = protected)
% steplmpl method is called by the step method.
function y = steplmpl(~,%x)
y = X + 1;
end
end
end

Use this object by creating an instance of AddOne, providing an input, and using the
step method.

hAdder = AddOne;
X = 1;
y = step(hAdder,x)

Assign the Nontunable attribute to the InitialValue property, which you define in
your class definition file.

matlab.System class

properties (Nontunable)
InitialValue
end

See Also

matlab.system_StringSet | matlab.system_mixin_FiniteSource

How To

. “Object-Oriented Programming”
. Class Attributes

. Property Attributes

. “Method Attributes”

. “Define Basic System Objects”

. “Define Property Attributes”

1-5

1 Alphabetical List

1-6

clonelmpl

Class: matlab.System
Package: matlab

Copy System object

Syntax

clonelmpl(obj)

Description

clonelmpl (obj) copies a System object by using the saveObjectimpl and
loadObjectImpl methods. The default clonelmpl copies an object and its current
state but does not copy any private or protected properties. If you define your own
clonelmpl and the associated saveObjectImpl and loadObjectImpl, you can specify
whether to clone the object’s state and whether to clone the object’s private and protected
properties. If the object you clone is locked and you use the default clonelmpl, the new
object will also be locked.

clonelmpl is called by the clone method

Note: You must set Access = protected for this method.

You cannot modify any properties in this method.

Input Arguments
obj

System object handle of object to clone.

clonelmpl

Examples

Clone a System Object
Use the clonelmpl method in your class definition file to copy a System object

methods (Access = protected)
function obj2 = clonelmpl(objl)
s = saveObject (objl);
obj2 = loadObject(s);
end
end

See Also
saveObjectimpl | saveObjectimpl

How To
. “Clone System Object”

1-7

1 Alphabetical List

1-8

getDiscreteStatelmpl

Class: matlab.System
Package: matlab

Discrete state property values

Syntax

s = getDiscreteStatelmpl(obj)

Description

s = getDiscreteStatelmpl (obj) returns a struct s of state values. The field
names of the struct are the object’s DiscreteState property names. To restrict or
change the values returned by getDiscreteState method, you can override this
getDiscreteStatelmpl method.

getDiscreteStatesImpl is called by the getDiscreteState method, which is called
by the setup method.

Note: You must set Access = protected for this method.

You cannot modify any properties in this method.

Input Arguments
obj

System object handle

Output Arguments
S

State values, returned as a struct

getDiscreteStatelmpl

Examples

Get Discrete State Values

Use the getDiscreteStatelmpl method in your class definition file to get the discrete

states of the object.

methods (Access = protected)
function s = getDiscreteStatelmpl(obj)
end

end

See Also

setuplImpl

How To
. “Define Property Attributes”

1-9

1 Alphabetical List

1-10

getNumIinputsimpl

Class: matlab.System
Package: matlab

Number of inputs to step method

Syntax

num = getNumlInputsimpl(obj)

Description

num = getNumlnputsimpl(obj) returns the number of inputs num expected by
the step method. The System object input argument is not included in the count. For
example, if your step method syntax is step(h_obj,x1,x2,x3), getNumlnputs
returns 3.

If your step method has a variable number of inputs (uses varargin), implement the
getNuminputsImpl method in your class definition file.

If the number of inputs expected by the step method is fixed (does not use varargin),
the default getNumlinputsImpl determines the required number of inputs directly from
the step method. In this case, you do not need to include getNumInputsimpl in your
class definition file.

getNumlInputslimpl is called by the getNumlInputs method and by the setup method if
the number of inputs has not been determined already.

Note: You must set Access = protected for this method.
You cannot modify any properties in this method.

If you set the return argument, num, from an object property, that object property must
have the Nontunable attribute.

getNumlInputsimpl

Input Arguments
obj

System object

Output Arguments

num

Number of inputs expected by the step method for the specified object, returned as an
integer.

Default: 1

Examples

Set Number of Inputs

Specify the number of inputs (2, in this case) expected by the step method.

methods (Access
Ffunction num
num = 2;
end
end

protected)
getNumlnputsimpl (~)

Set Number of Inputs to Zero

Specify that the step method does not accept any inputs.

methods (Access
function num
num = 0;
end
end

protected)
getNumlnputsimpl (~)

See Also
setuplmpl | stepImpl | getNumOutputsimpl

1-11

1 Alphabetical List

How To
. “Change Number of Step Inputs or Outputs”

1-12

getNumOutputsimpl

getNumOutputsimpl

Class: matlab.System
Package: matlab

Number of outputs from step method

Syntax

num = getNumOutputsimpl (obj)

Description

num = getNumOutputsimpl (obj) returns the number of outputs from the step
method.

If your step method has a variable number of outputs (uses varargout), implement
the getNumOutputsImpl method in your class definition file to determine the number
of outputs. Use nargout in the stepImpl method to assign the expected number of
outputs.

If the number of outputs expected by the step method is fixed (does not use varargout),
the object determines the required number of outputs from the step method. In this
case, you do not need to implement the getNumOutputsimpl method.

getNumOutputsimpl is called by the getNumOutputs method, if the number of outputs
has not been determined already.

Note: You must set Access = protected for this method.
You cannot modify any properties in this method.

If you set the return argument, num, from an object property, that object property must
have the Nontunable attribute.

1-13

1 Alphabetical List

Input Arguments
obj

System object

Output Arguments

num

Number of outputs from the step method for the specified object, returned as an integer.

Examples

Set Number of Outputs
Specify the number of outputs (2, in this case) returned from the step method.

methods (Access
function num
num = 2;
end
end

protected)
getNumOutputsimpl (~)

Set Number of Outputs to Zero

Specify that the step method does not return any outputs.

methods (Access
function num
num = 0;
end
end

protected)
getNumOutputsimpl (~)

Use nargout for Variable Number of Outputs

Use nargout in the stepImpl method when you have a variable number of outputs and
will generate code.

methods (Access = protected)

1-14

getNumOutputsimpl

function varargout = steplmpl(~,varargin)
for 1 = l:nargout
varargout{i} = varargin{i}+1;
end
end
end

See Also
stepIlmpl | getNumlnputsimpl | setupimpl

How To
. “Change Number of Step Inputs or Outputs”

1-15

1 Alphabetical List

1-16

infolmpl

Class: matlab.System
Package: matlab

Information about System object

Syntax

s = infolmpl(obj,varargin)

Description

s = infolmpl(obj,varargin) lets you set up information to return about the current
configuration of a System object obj. This information is returned in a struct from

the info method. The default infolmpl method, which is used if you do not include
infolmpl in your class definition file, returns an empty struct.

infolmpl is called by the info method.

Note: You must set Access = protected for this method.

Input Arguments
obj

System object
varargin

Optional. Allow variable number of inputs

Examples

Specify System object Information

Define the infolmpl method to return current count information.

infolmpl

methods (Access = protected)
function s = infolmpl(obj)
s = struct("Count”,obj.pCount);
end
end

How To

. “Define System Object Information”

1-17

1 Alphabetical List

1-18

islnactivePropertylmpl

Class: matlab.System
Package: matlab

Inactive property status

Syntax

flag = islnactivePropertylmpl(obj,prop)

Description

flag = islnactivePropertylmpl(obj,prop) specifies whether a public, non-state
property is inactive for the current object configuration. An inactive property is a property
that is not relevant to the object, given the values of other properties. Inactive properties
are not shown if you use the disp method to display object properties. If you attempt to
use public access to directly access or use get or set on an inactive property, a warning
occurs.

islnactiveProperty is called by the disp method and by the get and set methods.

Note: You must set Access = protected for this method.

Input Arguments
obj
System object handle

prop

Public, non-state property name

islnactivePropertylmpl

Output Arguments
flag

Inactive status Indicator of the input property prop for the current object configuration,
returned as a logical scalar value

Examples

Specify When a Property Is Inactive

Display the InitialValue property only when the UseRandomInitialValue property
value is false.

methods (Access = protected)
function flag = islnactivePropertylmpl(obj,propertyName)
if strcmp(propertyName, "Initialvalue®)
flag = obj.UseRandomlnitialValue;
else
flag = false;
end
end
end

See Also

setProperties

How To

. “Hide Inactive Properties”

1-19

1 Alphabetical List

1-20

isinputSizelLockedimpl

Class: matlab.System
Package: matlab

Locked input size status

Syntax

flag = islnputSizeLockedImpl(obj,i)

Description

flag = islnputSizeLockedImpl(obj, i) indicates whether the ith input port to the
step method has its size locked. If the input size is locked, inputs to the System object
cannot change size while the object is locked. If the input size is not locked, the size of
inputs to the object can change while the object is running and locked.

islnputSizeLockedImpl executes once for each input during System object
initialization.

Note: You must set Access = protected for this method.

Input Arguments
obj

System object

i

step method input port number

islnputSizeLockedImpl

Output Arguments

flag

Flag indicating whether the size of inputs to the specified port is locked, returned as a
logical scalar value. If the value of isInputSizeLockedImpl is true, the size of the

current input to that port is compared to the first input to that port. If the sizes do not
match, an error occurs.

Default: false

Examples

Check If Input Size Is Locked

Specify in your class definition file to check whether the size of the System object input is
locked.

methods (Access = protected)
function flag = islnputSizelLockedImpl(~, index)
flag = true;
end
end

1-21

1 Alphabetical List

1-22

loadObjectimpl

Class: matlab.System
Package: matlab

Load System object from MAT file

Syntax

loadObjectimpl (obj)

Description

loadObjectImpl (obj) loads a saved System object, obj, from a MAT file. Your
loadObjectImpl method should correspond to your saveObjectImpl method to ensure
that all saved properties and data are loaded.

Note: You must set Access = protected for this method.

Input Arguments
obj

System object

Examples

Load System object

Load a saved System object. In this example, the object contains a child object, protected
and private properties, and a discrete state. It also saves states if the object is locked and
calls the loadObjectImpl method from the matlab.System class.

methods (Access = protected)

loadObijectimpl

function loadObjectimpl(obj,s,wasLocked)
obj.child = matlab.System.loadObject(s-child);

obj.protectedprop = s.protectedprop;
obj.pdependentprop = s.pdependentprop;

if wasLocked
obj.state = s._state;
end

loadObjectimpl@matlab.System(obj,s,wasLocked);
end

end

See Also

saveObjectimpl

How To
. “Load System Object”
. “Save System Object”

1-23

1 Alphabetical List

1-24

processTunedPropertiesimpl

Class: matlab.System
Package: matlab

Action when tunable properties change

Syntax

processTunedPropertiesimpl(obj)

Description

processTunedPropertiesImpl (obj) specifies the actions to perform when one or
more tunable property values change. This method is called as part of the next call to
the step method after a tunable property value changes. A property is tunable only if its
Nontunable attribute is False, which is the default.

processTunedPropertiesIimpl is called by the step method

Note: You must set Access = protected for this method.

You cannot modify any tunable properties in this method if its System object will be used
in the Simulink® MATLAB System block.

Tips
Use this method when a tunable property affects the value of a different property.

To check if a property has changed since stepImpl was last called, use
isChangedProperty within processTunedPropertiesimpl.

processTunedPropertiesimpl

Input Arguments
obj

System object

Examples

Specify Action When Tunable Property Changes

Use processTunedPropertiesImpl to recalculate the lookup table if the value of
either the NumNotes or MiddleC property changes before the next call to the step
method. propChange indicates if either property has changed.

methods (Access = protected)
function processTunedPropertiesimpl(obj)
propChange = isChangedProperty(obj,obj.NumNotes) |]---
isChangedProperty(obj,obj_-MiddleC)
if propChange
obj.pLookupTable = obj.MiddleC * (1+log(1:0bj.NumNotes)/log(12));
end
end
end

See Also

validatePropertiesimpl | setProperties

How To
. “Validate Property and Input Values”
. “Define Property Attributes”

1-25

1 Alphabetical List

1-26

releaselmpl

Class: matlab.System
Package: matlab

Release resources

Syntax

releaselmpl(obj)

Description

releaselmpl (obj) releases any resources used by the System object, such as file
handles. This method also performs any necessary cleanup tasks. To release resources for
a System object, you must use releaselmpl instead of a destructor.

releaselmpl is called by the release method. releaselmpl is also called when the
object is deleted or cleared from memory, or when all references to the object have gone
out of scope.

Note: You must set Access = protected for this method.

Input Arguments
obj

System object

Examples

Close a File and Release Its Resources

Use the releaselmpl method to close a file opened by the System object.

releaselmpl

methods (Access = protected)
function releaselmpl(obj)
fclose(obj .pFilelD);
end
end

How To

. “Release System Object Resources”

1-27

1 Alphabetical List

1-28

resetimpl

Class: matlab.System
Package: matlab

Reset System object states

Syntax

resetimpl(obj)

Description

resetimpl(obj) defines the state reset equations for a System object. Typically you
reset the states to a set of initial values, which is useful for initialization at the start of
simulation.

resetImpl is called by the reset method only if the object is locked. The object
remains locked after it is reset. resetImpl is also called by the setup method, after the
setupImpl method.

Note: You must set Access = protected for this method.

You cannot modify any tunable properties in this method if its System object will be used
in the Simulink MATLAB System block.

Input Arguments
obj

System object

resetlmpl

Examples

Reset Property Value

Use the reset method to reset the state of the counter stored in the pCount property to
Zero.

methods (Access = protected)
function resetimpl(obj)
obj.pCount = 0;
end
end

See Also

releaselmpl

How To
. “Reset Algorithm State”

1-29

1 Alphabetical List

1-30

saveObjectimpl

Class: matlab.System
Package: matlab

Save System object in MAT file

Syntax

saveObjectimpl(obj)

Description

saveObjectimpl (obj) defines the System object obj property and state values to be
saved in a MAT file when a user calls save on that object. save calls saveObject,
which then calls saveObjectimpl.

If you do not define a saveObjectImpl method for your System object class, only public
properties and properties with the DiscreteState attribute are saved.

To save any private or protected properties or state information, you must define a
saveObjectImpl in your class definition file.

End users can use load, which calls loadObjectImpl to load a System object into their
workspace.

Tip Save the state of an object only if the object is locked. When the user loads that saved
object, it loads in that locked state.

To save child object information, use the associated saveObject method within the
saveObjectImpl method.

Note: You must set Access = protected for this method.

saveObjectimpl

Input Arguments
obj

System object

Examples

Define Property and State Values to Save

Define what is saved for the System object. Call the base class version of
saveObjectImpl to save public properties. Then, save any child System objects and any
protected and private properties. Finally, save the state if the object is locked.

methods (Access = protected)
function s = saveObjectimpl(obj)
s = saveObjectimpl@matlab.System(obj);
s.child = matlab.System.saveObject(obj.-child);
s.protectedprop = obj.protectedprop;
s.pdependentprop = obj.pdependentprop;
if isLocked(obj)
s.state = obj.state;
end
end
end

See Also
loadObjectimpl

How To
. “Save System Object”
. “Load System Object”

1-31

1 Alphabetical List

1-32

setProperties

Class: matlab.System
Package: matlab

Set property values using name-value pairs

Syntax

setProperties(obj,numargs,namel,valuel,name2,value2,...)
setProperties(obj,numargs,argl, ... ,argm,namel,valuel,name2,value2, ..., "ValueOr

Description

setProperties(obj,numargs,namel,valuel,name2,value2, .. .) provides the
name-value pair inputs to the System object constructor. Use this syntax if every input
must specify both name and value.

setProperties(obj,numargs,argl, . ..,argm,namel,valuel,name2,value2, ..., "ValueOr
provides the value-only inputs, followed by the name-value pair inputs to the System

object during object construction. Use this syntax if you want to allow users to specify one
or more inputs by their values only.

Input Arguments

obj

System object

numargs

Number of inputs passed in by the object constructor
namel,name2, ...

Name of property

setProperties

valuel,value2, . ..

Value of the property

argl,arg2, ...

Value of property (for value-only input to the object constructor)
ValueOnlyPropNamel,ValueOnlyPropName2, ...

Name of the value-only property

Examples

Setup Value-Only Inputs

Set up an object so users can specify value-only inputs for VPropl, VProp2, and other
property values via name-value pairs when constructing the object.

methods
function obj = MyFile(varargin)
setProperties(obj,nargin,varargin{:}, "VPropl®, "VProp2%);
end
end

How To

. “Set Property Values at Construction Time”

1-33

1 Alphabetical List

1-34

setuplmpl

Class: matlab.System
Package: matlab

Initialize System object

Syntax

setuplmpl(obj)
setuplmpl(obj,inputl,input2,...)

Description

setuplmpl (obj) sets up a System object and implements one-time tasks that do not
depend on any inputs to its stepImpl method. You typically use setuplImpl to set
private properties so they do not need to be calculated each time stepImpl method is
called. To acquire resources for a System object, you must use setupImpl instead of a
constructor.

setuplmpl executes the first time the step method is called on an object after that
object has been created. It also executes the next time step is called after an object has
been released.

setuplmpl(obj, inputl, input2, ...) sets up a System object using one or more
of the stepImpl input specifications. The number and order of inputs must match
the number and order of inputs defined in the stepImpl method. You pass the inputs
into setupImpl to use the specifications, such as size and data types in the one-time
calculations.

setuplmpl is called by the setup method, which is done automatically as the first
subtask of the step method on an unlocked System object.

Note: You can omit this method from your class definition file if your System object does
not require any setup tasks.

You must set Access = protected for this method.

setuplmpl

Do not use setupImpl to initialize or reset states. For states, use the resetimpl
method.

You cannot modify any tunable properties in this method if its System object will be used
in the Simulink MATLAB System block.

Tips

To validate properties or inputs use the val idatePropertiesimpl,
val idatelnputslimpl, or setProperties methods. Do not include validation in
setuplmpl.

Do not use the setupImpl method to set up input values.

Input Arguments
obj

System object handle
inputl, input2,...

Inputs to the stepImpl method

Examples

Setup a File for Writing

This example shows how to open a file for writing using the setupImpl method in your
class definition file.

methods (Access = protected)
function setuplmpl(obj)
obj.pFilelD = fopen(obj.Filename, "wb");
if obj.pFilelD < O
error("Opening the file failed");
end
end

1-35

1 Alphabetical List

end

See Also

val idatePropertiesimpl | validatelnputsimpl | setProperties

How To

“Initialize Properties and Setup One-Time Calculations”

. “Set Property Values at Construction Time”

1-36

steplmpl

steplmpl

Class: matlab.System
Package: matlab

System output and state update equations

Syntax

[outputl,output2,...] steplmpl(obj, inputl, input2,...)

Description

[outputl,output2,...] steplmpl(obj, inputl, input2,...) defines the
algorithm to execute when you call the step method on the specified object obj. The
step method calculates the outputs and updates the object’s state values using the
inputs, properties, and state update equations.

steplImpl is called by the step method.

Note: You must set Access = protected for this method.

Tips

The number of input arguments and output arguments must match the values returned
by the getNuminputsimpl and getNumOutputsImpl methods, respectively

Input Arguments
obj

System object handle
inputl, input2, ...

Inputs to the step method

1-37

1 Alphabetical List

Output Arguments

output

Output returned from the step method.

Examples

Specify System Object Algorithm

Use the stepImpl method to increment two numbers.

methods (Access = protected)
function [yl,y2] = steplmpl(obj,x1,x2)

yl = x1 + 1;
y2 = x2 + 1;
end
end
See Also

getNuminputsimpl | getNumlnputsimpl | getNumOutputsimpl |
validatelnputsimpl

How To
. “Define Basic System Objects”
. “Change Number of Step Inputs or Outputs”

1-38

validatelnputsimpl

validatelnputsimpl

Class: matlab.System
Package: matlab

Validate inputs to step method

Syntax

validatelnputsimpl(obj,inputl,input2,...)

Description

validatelnputsimpl(obj, inputl, input2,...) validates inputs to the step
method at the beginning of initialization. Validation includes checking data types,
complexity, cross-input validation, and validity of inputs controlled by a property value.

val idatelnputslImpl is called by the setup method before setuplImpl.
validatelnputsimpl executes only once.

Note: You must set Access = protected for this method.

You cannot modify any properties in this method. Use the
processTunedPropertiesImpl method or setupImpl method to modify properties.

Input Arguments
obj

System object handle
inputl, input2, ...

Inputs to the setup method

1-39

1 Alphabetical List

Examples

Validate Input Type
Validate that the input is numeric.

methods (Access = protected)
function validatelnputsimpl(~,x)
if ~isnumeric(x)
error(" Input must be numeric®);
end
end
end

See Also

validatePropertiesimpl | setuplmpl

How To
. “Validate Property and Input Values”

1-40

validatePropertiesimpl

validatePropertiesimpl

Class: matlab.System
Package: matlab

Validate property values

Syntax

val idatePropertiesimpl (obj)

Description

val idatePropertiesimpl (obj) validates interdependent or interrelated property
values at the beginning of object initialization, such as checking that the dependent or
related inputs are the same size.

val idatePropertiesImpl is the first method called by the setup method
validatePropertieslImpl also is called before the processTunedPropertiesimpl
method.

Note: You must set Access = protected for this method.

You cannot modify any properties in this method. Use the
processTunedPropertiesImpl method or setupImpl method to modify properties.

Tips
To check if a property has changed since stepImpl was last called, use

isChangedProperty(obj,property) within val idatePropertiesimpl.

Input Arguments
obj

System object handle

141

1 Alphabetical List

Examples

Validate a Property

Validate that the uselncrement property is true and that the value of the increment
property is greater than zero.

methods (Access = protected)
function validatePropertiesimpl(obj)
if obj.uselncrement && obj.increment < 0
error("The increment value must be positive®);
end
end
end

See Also

processTunedPropertiesimpl | setuplmpl | validatelnputsimpl

How To
. “Validate Property and Input Values”

1-42

matlab.system.mixin.FiniteSource class

matlab.system.mixin.FiniteSource class

Package: matlab.system.mixin

Finite source mixin class

Description

matlab.system.mixin.FiniteSource is a class that defines the 1sDone method,
which reports the state of a finite data source, such as an audio file.

To use this method, you must subclass from this class in addition to the matlab.System
base class. Type the following syntax as the first line of your class definition file, where
ObjectName is the name of your object:

classdef ObjectName < matlab.System &...
matlab.system.mixin.FiniteSource

Methods

isDonelmpl
End-of-data flag

See Also

matlab.System

Tutorials

. “Define Finite Source Objects”

How To

. “Object-Oriented Programming”
. Class Attributes

. Property Attributes

1-43

1 Alphabetical List

1-44

isDonelmpl

Class: matlab.system.mixin.FiniteSource
Package: matlab.system.mixin

End-of-data flag

Syntax

status = isDonelmpl(obj)

Description

status = isDonelmpl(obj) indicates if an end-of-data condition has occurred. The
isDone method should return false when data from a finite source has been exhausted,
typically by having read and output all data from the source. You should also define the
result of future reads from an exhausted source in the isDonelmpl method.

isDonelmpl is called by the isDone method.

Note: You must set Access = protected for this method.

Input Arguments
obj

System object handle

Output Arguments

status

Logical value, true or False, that indicates if an end-of-data condition has occurred or
not, respectively.

isDoneImpl

Examples

Check for End-of-Data

Set up the 1sDonelmpl method in your class definition file so the isDone method checks

whether the object has completed eight iterations.

methods (Access = protected)
function bdone = isDonelmpl(obj)
bdone = obj.Numlters==8;
end
end

See Also

matlab_system.mixin_FiniteSource

How To

. “Define Finite Source Objects”

1-45

1 Alphabetical List

1-46

matlab.system.StringSet class

Package: matlab.system

Set of valid string values

Description

matlab.system.StringSet defines a list of valid string values for a property. This
class validates the string in the property and enables tab completion for the property
value. A StringSet allows only predefined or customized strings as values for the
property.

A StringSet uses two linked properties, which you must define in the same class.

One is a public property that contains the current string value. This public property is
displayed to the user. The other property is a hidden property that contains the list of all
possible string values. This hidden property should also have the transient attribute so
its value is not saved to disk when you save the System object.

The following considerations apply when using StringSets:

* The string property that holds the current string can have any name.

* The property that holds the StringSet must use the same name as the string
property with the suffix “Set” appended to it. The string set property is an instance of
the matlab.system.StringSet class.

+ Valid strings, defined in the StringSet, must be declared using a cell array. The
cell array cannot be empty nor can it have any empty strings. Valid strings must be
unique and are case-insensitive.

* The string property must be set to a valid StringSet value.

Examples

Set String Property Values

Set the string property, Flavor, and the StringSet property, FlavorSet in your class
definition file.

matlab.system.StringSet class

properties
Flavor = "Chocolate”;
end

properties (Hidden,Transient)
FlavorSet = ...

matlab.system_StringSet({"Vanilla®,"Chocolate"});
end

See Also
matlab.System

How To

. “Object-Oriented Programming”

. Class Attributes

. Property Attributes

. “Limit Property Values to Finite String Set”

1-47

1 Alphabetical List

1-48

phased. ADPCACanceller System object

Package: phased

Adaptive DPCA (ADPCA) pulse canceller

Description

The ADPCACancel ler object implements an adaptive displaced phase center array pulse
canceller.

To compute the output signal of the space time pulse canceller:

Define and set up your ADPCA pulse canceller. See “Construction” on page 1-48.

2 Call step to execute the ADPCA algorithm according to the properties of
phased.ADPCACancel ler. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.ADPCACanceller creates an adaptive displaced phase center array
(ADPCA) canceller System object, H. This object performs two-pulse ADPCA processing
on the input data.

H = phased.ADPCACanceller(Name,Value) creates an ADPCA object, H, with
each specified property Name set to the specified Value. You can specify additional

name-value pair arguments in any order as (Namel,Valuel,...,NameN,ValueN). See
“Properties” on page 1-48 for the list of available property names.

Properties

SensorArray

Handle to sensor array

phased. ADPCACanceller System object

Specify the sensor array as a handle. The sensor array must be an array object in the
phased package. The array cannot contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.
Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (PRF) of the received signal in hertz as a scalar.
Default: 1

DirectionSource

Source of receiving mainlobe direction

Specify whether the targeting direction for the STAP processor comes from the Direction
property of this object or from an input argument in step. Values of this property are:

"Property” The Direction property of this object specifies the targeting
direction.

"Input port* An input argument in each invocation of step specifies the
targeting direction.

1-49

1 Alphabetical List

Default: "Property*

Direction

Receiving mainlobe direction (degrees)

Specify the receiving mainlobe direction of the receiving sensor array as a column
vector of length 2. The direction is specified in the format of [AzimuthAngle;
ElevationAngle] (in degrees). Azimuth angle should be between —180 and 180.
Elevation angle should be between —90 and 90. This property applies when you set the
DirectionSource property to "Property”.

Default: [0; 0]

DopplerSource

Source of targeting Doppler

Specify whether the targeting Doppler for the STAP processor comes from the Doppler
property of this object or from an input argument in step. Values of this property are:

"Property” The Doppler property of this object specifies the Doppler.
"Input port” An input argument in each invocation of step specifies the
Doppler.

Default: "Property”
Doppler
Targeting Doppler frequency (Hz)

Specify the targeting Doppler of the STAP processor as a scalar. This property applies
when you set the DopplerSource property to "Property”.

Default: O
WeightsOutputPort

Output processing weights

1-50

phased. ADPCACanceller System object

To obtain the weights used in the STAP processor, set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the
weights, set this property to false.

Default: false
PreDopplerOutput
Output pre-Doppler result

Set this property to true to output the processing result before applying the Doppler
filtering. Set this property to False to output the processing result after the Doppler
filtering.

Default: false
NumGuardCells
Number of guarding cells

Specify the number of guard cells used in the training as an even integer. This property
specifies the total number of cells on both sides of the cell under test.

Default: 2, indicating that there is one guard cell at both the front and back of the cell
under test

NumTrainingCells
Number of training cells

Specify the number of training cells used in the training as an even integer. Whenever
possible, the training cells are equally divided before and after the cell under test.

Default: 2, indicating that there is one training cell at both the front and back of the cell
under test

Methods

clone
Create ADPCA object with same property
values

1-51

1 Alphabetical List

1-52

getNumlInputs
Number of expected inputs to step method
getNumOutputs
Number of outputs from step method
isLocked
Locked status for input attributes and
nontunable properties
release
Allow property value and input
characteristics changes
step

Perform ADPCA processing on input data

Process radar data cube using ADPCA processor.

Process a radar data cube using an ADPCA processor. The weights are calculated for the
71st cell of the data cube. Set the look direction to [0;0] degrees and the Doppler shift to
12980 Hz.

Load radar data file and compute weights

load STAPExampleData;

Hs = phased.ADPCACanceller("SensorArray”,STAPEX HArray, - ..
"PRF*",STAPEX_PRF, . ..
"PropagationSpeed”,STAPEX_PropagationSpeed, ...
"OperatingFrequency”,STAPEx_OperatingFrequency, - ..
*NumTrainingCells®,100, ...
"WeightsOutputPort” ,true, ...

"DirectionSource”, " Input port~®, ...
"DopplerSource®, "Input port*®);
[y,w] = step(Hs,STAPEx_ReceivePulse,71,[0; 0],12980);

Create AnglerDoppler System object and plot response

Hresp = phased.AngleDopplerResponse(...
"SensorArray” ,Hs.SensorArray, - . .
"OperatingFrequency” ,Hs.OperatingFrequency, - ..
"PRF" ,Hs.PRF, . ..

"PropagationSpeed” ,Hs_PropagationSpeed) ;
plotResponse(Hresp,w);

phased. ADPCACanceller System object

Doppler Frequency (Hz)

15

-

o
eri

=

S
(%)

<104 Angle-Doppler Response Pattern

Power (dB)

-B0
-80 60 40 -20 o 20 40 60 B0

Angle (degrees)

References

[1] Guereci, J. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,”
Technical Report 1015, MIT Lincoln Laboratory, December, 1994.

See Also

phased.AngleDopplerResponse | phased.DPCACanceller |
phased.STAPSMIBeamformer | phitheta2azel | uv2azel

1-53

1 Alphabetical List

clone

System object: phased ADPCACanceller
Package: phased

Create ADPCA object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1-54

getNumlnputs

getNumlinputs

System object: phased ADPCACanceller
Package: phased

Number of expected inputs to step method

Syntax

N = getNumlnputs(H)

Description

N = getNumlnputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) you must use when calling the step method. This value
changes when you alter properties that turn inputs on or off.

1-55

1 Alphabetical List

getNumOutputs

System object: phased ADPCACanceller
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)
Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1-56

isLocked

isLocked

System object: phased ADPCACanceller
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the ADPCACancel ler System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

1-57

1 Alphabetical List

release

System object: phased ADPCACanceller
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1-58

step

step

System object: phased. ADPCACanceller
Package: phased

Perform ADPCA processing on input data

Syntax

Y = step(H,X,CUTIDX)

Y = step(H,X,CUTIDX,ANG)
Y = step(_ ,DOP)

LY.W] = step(_)

Description

Y = step(H,X,CUTIDX) applies the ADPCA pulse cancellation algorithm to the input
data X. The algorithm calculates the processing weights according to the range cell
specified by CUTIDX. This syntax is available when the DirectionSource property
is "Property” and the DopplerSource property is "Property”. The receiving
mainlobe direction is the Direction property value. The output Y contains the

result of pulse cancellation either before or after Doppler filtering, depending on the
PreDopplerOutput property value.

Y = step(H,X,CUTIDX,ANG) uses ANG as the receiving mainlobe direction. This
syntax is available when the DirectionSource property is " Input port” and the
DopplerSource property is "Property”.

Y = step(,DOP) uses DOP as the targeting Doppler frequency. This syntax is
available when the DopplerSource property is " Input port”.

[Y.,W] = step() returns the additional output, W, as the processing weights. This
syntax is available when the WeightsOutputPort property is true.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable

1-59

1 Alphabetical List

1-60

property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments
H

Pulse canceller object.

X

Input data. X must be a 3-dimensional M-by-N-by-P numeric array whose dimensions are
(range, channels, pulses).

CUTIDX
Range cell.
ANG

Receiving mainlobe direction. ANG must be a 2-by-1 vector in the form [AzimuthAngle;
ElevationAngle], in degrees. The azimuth angle must be between —180 and 180. The
elevation angle must be between —90 and 90.

Default: Direction property of H
DOP
Targeting Doppler frequency in hertz. DOP must be a scalar.

Default: Doppler property of H

Output Arguments

Y

Result of applying pulse cancelling to the input data. The meaning and dimensions of Y
depend on the PreDopplerOutput property of H:

step

+ If PreDopplerOutputis true, Y contains the pre-Doppler data. Y is an M-by-(P-
1) matrix. Each column in Y represents the result obtained by cancelling the two
successive pulses.

+ If PreDopplerOutput is false, Y contains the result of applying an FFT-based
Doppler filter to the pre-Doppler data. The targeting Doppler is the Doppler property
value. Y is a column vector of length M.

w

Processing weights the pulse canceller used to obtain the pre-Doppler data. The
dimensions of W depend on the PreDopplerOutput property of H:

+ If PreDopplerOutput is true, W is a 2N-by-(P-1) matrix. The columns in W
correspond to successive pulses in X.

+ If PreDopplerOutput is False, W is a column vector of length (N*P).

Examples

Process the example radar data cube, STAPExampleData.mat, using an ADPCA
processor. The weights are calculated for the 71st cell of a collected radar data cube.
The look direction is [0; 0] degrees and the Doppler frequency is 12980 Hz. After
constructing the phased.ADPCACancel ler object, use step to process the data.

load STAPExampleData; % load radar data cube

Hs = phased.ADPCACanceller("SensorArray”,STAPEX HArray, ...
"PRF",STAPEX_PRF, . ..
"PropagationSpeed” ,STAPEX_PropagationSpeed, . . .
"OperatingFrequency”,STAPEX_OperatingFrequency, ...
"NumTrainingCells®,100, ...
"WeightsOutputPort” ,true, ...
"DirectionSource”, "Input port", ...
"DopplerSource”, "Input port®);

[y.w] = step(Hs,STAPEx_ReceivePulse,71,[0; 0],12980);

See Also

phitheta2azel | uv2azel

1-61

1 Alphabetical List

1-62

phased.AngleDopplerResponse System object

Package: phased

Angle-Doppler response

Description
The AngleDopplerResponse object calculates the angle-Doppler response of input data.

To compute the angle-Doppler response:

1 Define and set up your angle-Doppler response calculator. See “Construction” on
page 1-62.

2 Call step to compute the angle-Doppler response of the input signal according to the
properties of phased.AngleDopplerResponse. The behavior of step is specific to
each object in the toolbox.

Construction

H = phased.AngleDopplerResponse creates an angle-Doppler response System
object, H. This object calculates the angle-Doppler response of the input data.

H = phased.AngleDopplerResponse(Name,Value) creates angle-Doppler object, H,
with each specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Namel,Valuel,...,NameN,ValueN).

Properties

SensorArray
Sensor array

Sensor array specified as an array System object belonging to the phased package. A
sensor array can contain subarrays.

Default: phased.ULA with default property values

phased.AngleDopplerResponse System object

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.
Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8
PRF
Pulse repetition frequency

Specify the pulse repetition frequency (PRF) in hertz of the input signal as a positive
scalar.

Default: 1
ElevationAngleSource
Source of elevation angle

Specify whether the elevation angle comes from the ElevationAngle property of this
object or from an input argument in step. Values of this property are:

"Property” The ElevationAngle property of this object specifies
the elevation angle.

"Input port- An input argument in each invocation of step
specifies the elevation angle.

Default: "Property”
ElevationAngle

Elevation angle

1-63

1 Alphabetical List

1-64

Specify the elevation angle in degrees used to calculate the angle-Doppler response as a
scalar. The angle must be between —90 and 90. This property applies when you set the
ElevationAngleSource property to "Property”.

Default: O

NumAngleSamples

Number of samples in angular domain

Specify the number of samples in the angular domain used to calculate the angle-Doppler
response as a positive integer. This value must be greater than 2.

Default: 256
NumDopplerSamples
Number of samples in Doppler domain

Specify the number of samples in the Doppler domain used to calculate the angle-Doppler
response as a positive integer. This value must be greater than 2.

Default: 256

Methods

clone
Create angle-Doppler response object with
same property values
getNumlInputs
Number of expected inputs to step method
getNumQOutputs
Number of outputs from step method
isLocked
Locked status for input attributes and
nontunable properties
plotResponse

Plot angle-Doppler response

phased.AngleDopplerResponse System object

release
Allow property value and input
characteristics changes

step
Calculate angle-Doppler response

Calculate Angle-Doppler response

Calculate the angle-Doppler response of the 190th cell of a collected data cube.

Load data and construct AngleDopplerResponse System object

load STAPExampleData;

X = shiftdim(STAPEx_ReceivePulse(190,:,:));

hadresp = phased.AngleDopplerResponse(. ..
"SensorArray” ,STAPEX_HArray, - . .
"OperatingFrequency”,STAPEX_OperatingFrequency, - ..
"PropagationSpeed”,STAPEx_PropagationSpeed, ...
"PRF*,STAPEX_PRF);

Plot Angle-Doppler response
[resp,ang_grid,dop_grid] = step(hadresp,x);

contour(ang_grid,dop_grid,abs(resp))
xlabel ("Angle™); ylabel("Doppler™);

1-65

1 Alphabetical List

Algorithms

phased.AngleDopplerResponse generates the response using a conventional
beamformer and an FFT-based Doppler filter. For further details, see [1].

References
[1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

1-66

phased.AngleDopplerResponse System object

See Also
phased.ADPCACanceller | phased.DPCACanceller |
phased.STAPSMIBeamformer | phitheta2azel | uv2azel

1-67

1 Alphabetical List

clone

System object: phased.AngleDopplerResponse
Package: phased

Create angle-Doppler response object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1-68

getNumlnputs

getNumlinputs

System object: phased.AngleDopplerResponse
Package: phased

Number of expected inputs to step method

Syntax

N = getNumlnputs(H)

Description

N = getNumlnputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) you must use when calling the step method. This value
changes when you alter properties that turn inputs on or off.

1-69

1 Alphabetical List

getNumOutputs

System object: phased.AngleDopplerResponse
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)
Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1-70

isLocked

isLocked

System object: phased.AngleDopplerResponse
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the AngleDopplerResponse
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

1-71

1 Alphabetical List

plotResponse

System object: phased.AngleDopplerResponse
Package: phased

Plot angle-Doppler response

Syntax

plotResponse(H,X)
plotResponse(H, X,ELANG)
plotResponse(___ ,Name,Value)
hPlot = plotResponse(__)

Description

plotResponse(H, X) plots the angle-Doppler response of the data in X in decibels. This
syntax is available when the ElevationAngleSource property is "Property”.

plotResponse(H, X,ELANG) plots the angle-Doppler response calculated
using the specified elevation angle ELANG. This syntax is available when the
ElevationAngleSource property is " Input port”.

plotResponse(,Name,Value) plots the angle-Doppler response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse() returns the handle of the image in the figure window,
using any of the input arguments in the previous syntaxes.

Input Arguments

H

Angle-Doppler response object.
X

Input data.

1-72

plotResponse

ELANG
Elevation angle in degrees.

Default: Value of Elevation property of H

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"NormalizeDoppler®

Set this value to true to normalize the Doppler frequency. Set this value to False to plot
the angle-Doppler response without normalizing the Doppler frequency.

Default: false
"Unit-
The unit of the plot. Valid values are "db*", "mag”, and "pow".

Default: "db*

Plot Angle-Doppler Response

Plot the angle-Doppler response of the 190th cell of a collected data cube.

load STAPExampleData;

X = shiftdim(STAPEx_ReceivePulse(190,:,:));

hadresp = phased.AngleDopplerResponse(. - .
"SensorArray” ,STAPEX_HArray, - ..
"OperatingFrequency”,STAPEX_OperatingFrequency, ...
"PropagationSpeed” ,STAPEX_PropagationSpeed, . . .
"PRF*",STAPEX_PRF);

plotResponse(hadresp,x, "NormalizeDoppler”,true);

1-73

1 Alphabetical List

Mormalized Doppler Frequency

& &5 5
ha

(A

1-74

o
(]

=
=

o
L

=
(%)

=
-k

=

iy

S
E-9

o
ot

Angle-Doppler Response Pattern

80 60 40 -20 0O 20 40 60 80
Angle (degrees)

See Also

phitheta2azel | uv2azel

-50

-60

-B0

-840

-110

-120

Power (dB)

release

release

System object: phased.AngleDopplerResponse
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1-75

1 Alphabetical List

1-76

step

System object: phased.AngleDopplerResponse
Package: phased

Calculate angle-Doppler response

Syntax
[RESP,ANG_GRID,DOP_GRID] = step(H,X)
[RESP,ANG_GRID,DOP_GRID] = step(H,X,ELANG)

Description

[RESP,ANG_GRID,DOP_GRID] = step(H,X) calculates the angle-Doppler response

of the data X. RESP is the complex angle-Doppler response. ANG_GRID and DOP_GRID
provide the angle samples and Doppler samples, respectively, at which the angle-Doppler
response is evaluated. This syntax is available when the ElevationAngleSource
property is "Property”.

[RESP,ANG_GRID,DOP_GRID] = step(H,X,ELANG) calculates the angle-Doppler
response using the specified elevation angle ELANG. This syntax is available when the
ElevationAngleSource property is " Input port”.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments
H

Angle-Doppler response object.

step

X
Input data as a matrix or column vector.

If X is a matrix, the number of rows in the matrix must equal the number of elements of
the array specified in the SensorArray property of H.

If X is a vector, the number of rows must be an integer multiple of the number of
elements of the array specified in the SensorArray property of H. In addition, the
multiple must be at least 2.

ELANG

Elevation angle in degrees.

Default: Value of Elevation property of H

Output Arguments

RESP

Complex angle-Doppler response of X. RESP is a P-by-Q matrix. P is determined by the
NumDopplerSamples property of H and Q is determined by the NumAngleSamples
property.

ANG_GRID

Angle samples at which the angle-Doppler response is evaluated. ANG_GRID is a column
vector of length Q.

DOP_GRID

Doppler samples at which the angle-Doppler response is evaluated. DOP_GRID is a
column vector of length P.

Calculate Angle-Doppler response

Calculate the angle-Doppler response of the 190th cell of a collected data cube.

1-77

1 Alphabetical List

1-78

Load data and construct AngleDopplerResponse System object

load STAPExampleData;

X = shiftdim(STAPEx_ReceivePulse(190,:,:));

hadresp = phased.AngleDopplerResponse(. ..
"SensorArray”,STAPEx_HArray, - - -

"OperatingFrequency”,STAPEx_OperatingFrequency, ...

"PropagationSpeed” ,STAPEXx_PropagationSpeed, . . .
PRF,STAPEX_PRF);

Plot Angle-Doppler response
[resp,ang_grid,dop_grid] = step(hadresp,x);

contour(ang_grid,dop_grid,abs(resp))
xlabel ("Angle®); ylabel("Doppler™);

step

Doppler

Algorithms

phased.AngleDopplerResponse generates the response using a conventional
beamformer and an FFT-based Doppler filter. For further details, see [1].

References

[1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

1-79

1 Alphabetical List

See Also

azel2phitheta | azel2uv | phitheta2azel | uv2azel

1-80

phased.ArrayGain System object

phased.ArrayGain System object

Package: phased

Sensor array gain

Description

The ArrayGain object calculates the array gain for a sensor array. The array gain is
defined as the signal to noise ratio (SNR) improvement between the array output and the
individual channel input, assuming the noise is spatially white. It is related to the array
response but is not the same.

To compute the SNR gain of the antenna for specified directions:

1 Define and set up your array gain calculator. See “Construction” on page 1-81.

2 Call step to estimate the gain according to the properties of phased.ArrayGain.
The behavior of step is specific to each object in the toolbox.

Construction

H = phased.ArrayGain creates an array gain System object, H. This object calculates
the array gain of a 2-element uniform linear array for specified directions.

H = phased.ArrayGain(Name,Value) creates and array-gain object, H, with the
specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Namel,Valuel,...,NameN,ValueN).

Properties

SensorArray
Sensor array

Sensor array specified as an array System object belonging to the phased package. A
sensor array can contain subarrays.

1-81

1 Alphabetical List

1-82

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.
Default: Speed of light

WeightslnputPort

Add input to specify weights

To specify weights, set this property to true and use the corresponding input argument
when you invoke step. If you do not want to specify weights, set this property to false.

Default: false

Methods

clone
Create array gain object with same
property values
getNumInputs
Number of expected inputs to step method
getNumOutputs
Number of outputs from step method
isLocked
Locked status for input attributes and
nontunable properties
release
Allow property value and input
characteristics changes
step

Calculate array gain of sensor array

phased.ArrayGain System object

Definitions

Array Gain

The array gain is defined as the signal to noise ratio (SNR) improvement between the
array output and the individual channel input, assuming the noise is spatially white. You
can express the array gain as follows:

whvsv" w
SNR, ¢ _ wH Nw _ w v w
SNR;, s ww
N

In this equation:

* w is the vector of weights applied on the sensor array. When you use
phased.ArrayGain, you can optionally specify weights by setting the
WeightsInputPort property to true and specifying the W argument in the step
method syntax.

* v is the steering vector representing the array response toward a given direction.
When you call the step method, the ANG argument specifies the direction.

* s1is the input signal power.
+ Nis the noise power.
* H denotes the complex conjugate transpose.

For example, if a rectangular taper is used in the array, the array gain is the square of
the array response normalized by the number of elements in the array.

Examples

Calculate the array gain for a uniform linear array at the direction of 30 degrees azimuth
and 20 degrees elevation. The array operating frequency is 300 MHz.

ha = phased.ULA(4);
hag = phased.ArrayGain("SensorArray”,ha);
g = step(hag,3e8,[30;20]);

1-83

1 Alphabetical List

References

[1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also

phased.ArrayResponse | phased.ElementDelay | phased.SteeringVector

1-84

clone

clone

System object: phased.ArrayGain
Package: phased

Create array gain object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1-85

1 Alphabetical List

getNumlinputs

System object: phased.ArrayGain
Package: phased

Number of expected inputs to step method

Syntax

N = getNumlnputs(H)

Description

N = getNumlnputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) you must use when calling the step method. This value
changes when you alter properties that turn inputs on or off.

1-86

getNumOutputs

getNumOutputs

System object: phased.ArrayGain
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)
Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1-87

1 Alphabetical List

1-88

isLocked

System object: phased.ArrayGain
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description
TF = isLocked(H) returns the locked status, TF, for the ArrayGain System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

release

release

System object: phased.ArrayGain
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1-89

1 Alphabetical List

1-90

step

System object: phased.ArrayGain
Package: phased

Calculate array gain of sensor array

Syntax

G = step(H,FREQ,ANG)

G = step(H,FREQ,ANG,WEIGHTS)

G = step(H,FREQ,ANG, STEERANGLE)

G = step(H,FREQ,ANG,WEIGHTS, STEERANGLE)

Description

G = step(H,FREQ,ANG) returns the array gain G of the array for the operating
frequencies specified in FREQ and directions specified in ANG.

G = step(H,FREQ,ANG,WEIGHTS) applies weights WEIGHTS on the sensor array.
This syntax is available when you set the WeightslnputPort property to true.

G = step(H,FREQ,ANG,STEERANGLE) uses STEERANGLE as the subarray steering
angle. This syntax is available when you configure H so that H.Sensor is an array that
contains subarrays, and H.Sensor .SubarraySteering is either "Phase” or "Time".

G = step(H,FREQ,ANG,WEIGHTS, STEERANGLE) combines all input arguments.
This syntax is available when you configure H so that H.WeightsInputPort is true,
H.Sensor is an array that contains subarrays, and H.Sensor .SubarraySteering is
either "Phase” or "Time".

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

step

Input Arguments
H

Array gain object.

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical

values are within the range specified by a property of the sensor element. The

element is H.SensorArray.Element, H.SensorArray.Array.Element, or
H.SensorArray.Subarray.Element, depending on the type of array. The frequency
range property is named FrequencyRange or FrequencyVector, depending on the type
of element in the array. The element has zero response at frequencies outside that range.

ANG
Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must be between —180 and 180 degrees,
inclusive. The elevation angle must be between —90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

WEIGHTS

Weights on the sensor array. WEIGHTS can be either an N-by-L matrix or a column
vector of length N. N is the number of subarrays if H. SensorArray contains subarrays,
or the number of elements otherwise. L is the number of frequencies specified in FREQ.

If WEIGHTS is a matrix, each column of the matrix represents the weights at the
corresponding frequency in FREQ.

If WEIGHTS is a vector, the weights apply at all frequencies in FREQ.
STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a length-2 column vector or a
scalar.

1-91

1 Alphabetical List

1-92

If STEERANGLE is a length-2 vector, it has the form [azimuth; elevation]. The azimuth
angle must be between —180 and 180 degrees, and the elevation angle must be between —
90 and 90 degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In this case, the elevation
angle is assumed to be 0.

Output Arguments

G

Gain of sensor array, in decibels. G is an M-by-L matrix. G contains the gain at the M
angles specified in ANG and the L frequencies specified in FREQ.

Definitions

Array Gain

The array gain is defined as the signal to noise ratio (SNR) improvement between the
array output and the individual channel input, assuming the noise is spatially white. You
can express the array gain as follows:

LUHUSUHLU
SNRyy _ | wNw | wHoofw
SNR,, s wHw
N

In this equation:

* w 1is the vector of weights applied on the sensor array. When you use
phased.ArrayGain, you can optionally specify weights by setting the
WeightsInputPort property to true and specifying the W argument in the step
method syntax.

+ v 1is the steering vector representing the array response toward a given direction.
When you call the step method, the ANG argument specifies the direction.

* s1is the input signal power.

step

* N is the noise power.

* H denotes the complex conjugate transpose.

For example, if a rectangular taper is used in the array, the array gain is the square of
the array response normalized by the number of elements in the array.

Examples

Construct a uniform linear array with six elements. The array operates at 1 GHz and
the array elements are spaced at one half the operating frequency wavelength. Find the
array gain in decibels for the direction 45 degrees azimuth and 10 degrees elevation.

% operating frequency 1 GHz

fc = 1le9;

% 1 GHz wavelength

lambda = physconst("LightSpeed®)/fc;

% construct the ULA

hULA = phased.ULA("NumElements®,6, "ElementSpacing”, lambda/2);
% construct the array gain object with the ULA as the sensor array
hgain = phased.ArrayGain("“SensorArray”,hULA);

% use step method to determine array gain at the specified

% operating frequency and angle

arraygain = step(hgain,fc,[45;10]);

% array gain is approximately -17.93 dB

See Also

phitheta2azel | uv2azel

1-93

1 Alphabetical List

1-94

phased.ArrayResponse System object

Package: phased

Sensor array response

Description
The ArrayResponse object calculates the complex-valued response of a sensor array.
To compute the response of the array for specified directions:

1 Define and set up your array response calculator. See “Construction” on page
1-94.

2 Call step to estimate the response according to the properties of
phased.ArrayResponse. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.ArrayResponse creates an array response System object, H. This object
calculates the response of a sensor array for the specified directions. By default, a 2-
element uniform linear array (ULA) is used.

H = phased.ArrayResponse(Name,Value) creates object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Namel,Valuel,...,NameN,ValueN).

Properties

SensorArray
Handle to sensor array used to calculate response

Specify the sensor array as a handle. The sensor array must be an array object in the
phased package. The array can contain subarrays.

Default: phased.ULA with default property values

phased.ArrayResponse System object

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.
Default: Speed of light

WeightslinputPort

Add input to specify weights

To specify weights, set this property to true and use the corresponding input argument
when you invoke step. If you do not want to specify weights, set this property to false.

Default: false
EnablePolarization
Enable polarization simulation

Set this property to true to let the array response simulate polarization. Set this
property to False to ignore polarization. This property applies only when the array
specified in the SensorArray property is capable of simulating polarization.

Default: false

Methods

clone
Create array response object with same
property values
getNumlInputs
Number of expected inputs to step method
getNumOutputs
Number of outputs from step method
isLocked

Locked status for input attributes and
nontunable properties

1-95

1 Alphabetical List

1-96

release
Allow property value and input

characteristics changes

step
Calculate array response of sensor array

Plot Array Response

Calculate array response for a 4-element uniform linear array (ULA) in the direction of
30 degrees azimuth and 20 degrees elevation. Assume the array's operating frequency is
300 MHz.

Construct ULA and ArrayResponse System objects

ha = phased.ULA(4);

har = phased.ArrayResponse("SensorArray”,ha);
resp = step(har,3e8,[30;20]);

Plot the array response in dB

By default, the plot has a normalized power and is taken as an azimuth cut at O degrees
elevation.

plotResponse(ha, 3e8,physconst("LightSpeed”));

phased.ArrayResponse System object

Azimuth Cut (elevation angle = 0.0)

Normalized FPower (dB)
¢n k o P L
= = = = =

&
=]

-150

-100 -50 0 50 100 150
Azimuth Angle (degrees)

200

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also

phased.ArrayGain | phased.ConformalArray/plotResponse

phased.ElementDelay | phased.SteeringVector | phased.ULA/plotResponse |
phased.URA/plotResponse

1-97

1 Alphabetical List

clone

System object: phased.ArrayResponse
Package: phased

Create array response object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1-98

getNumlnputs

getNumlinputs

System object: phased.ArrayResponse
Package: phased

Number of expected inputs to step method

Syntax

N = getNumlnputs(H)

Description

N = getNumlnputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) you must use when calling the step method. This value
changes when you alter properties that turn inputs on or off.

1-99

1 Alphabetical List

getNumOutputs

System object: phased.ArrayResponse
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)
Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1-100

isLocked

isLocked

System object: phased.ArrayResponse
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the ArrayResponse System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

1-101

1 Alphabetical List

release

System object: phased.ArrayResponse
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1-102

step

step

System object: phased.ArrayResponse
Package: phased

Calculate array response of sensor array

Syntax

RESP = step(H,FREQ,ANG)

RESP = step(H,FREQ,ANG,WEIGHTS)

RESP = step(H,FREQ,ANG,STEERANGLE)

RESP = step(H,FREQ,ANG,WEIGHTS, STEERANGLE)
Description

RESP = step(H,FREQ,ANG) returns the array response RESP at operating frequencies
specified in FREQ and directions specified in ANG.

RESP = step(H,FREQ,ANG,WEIGHTS) applies weights WEIGHTS on the sensor array.
This syntax is available when you set the WeightslInputPort property to true.

RESP = step(H,FREQ,ANG,STEERANGLE) uses STEERANGLE as the subarray
steering angle. This syntax is available when you configure H so that H.Sensor is an
array that contains subarrays, and H. Sensor . SubarraySteering is either "Phase” or
"Time~.

RESP = step(H,FREQ,ANG,WEIGHTS, STEERANGLE) combines all input arguments.
This syntax is available when you configure H so that H.WeightslnputPort is true,
H.Sensor is an array that contains subarrays, and H.Sensor . SubarraySteering is
either "Phase” or "Time".

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

1-103

1 Alphabetical List

1-104

nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments
H

Array response object.
FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical

values are within the range specified by a property of the sensor element. The

element is H.SensorArray.Element, H.SensorArray.Array.Element, or
H.SensorArray.Subarray.Element, depending on the type of array. The frequency
range property is named FrequencyRange or FrequencyVector, depending on the type
of element in the array. The element has zero response at frequencies outside that range.
The element has zero response at frequencies outside that range.

ANG
Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must be between —180 and 180 degrees,
inclusive. The elevation angle must be between —90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

WEIGHTS

Weights on the sensor array. WEIGHTS can be either an N-by-L matrix or a column
vector of length N. N is the number of subarrays if H. SensorArray contains subarrays,
or the number of elements otherwise. L is the number of frequencies specified in FREQ.

If WEIGHTS is a matrix, each column of the matrix represents the weights at the
corresponding frequency in FREQ.

If WEIGHTS is a vector, the weights apply at all frequencies in FREQ.

step

STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a length-2 column vector or a
scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth; elevation]. The azimuth
angle must be between —180 and 180 degrees, and the elevation angle must be between —
90 and 90 degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In this case, the elevation
angle is assumed to be 0.

Output Arguments

RESP

Voltage response of the sensor array. The response depends on whether the
EnablePolarization property is set to true or false.

+ Ifthe EnablePolarization property is set to False, the voltage response, RESP,
has the dimensions M-by-L. M represents the number of angles specified in the input
argument ANG while L represents the number of frequencies specified in FREQ.

+ Ifthe EnablePolarization property is set to true, the voltage response, RESP,
is a MATLAB struct containing two fields, RESP.H and RESP.V. The RESP .H field
represents the array’s horizontal polarization response, while RESP .V represents
the array’s vertical polarization response. Each field has the dimensions M-by-L.

M represents the number of angles specified in the input argument, ANG, while L
represents the number of frequencies specified in FREQ.

Examples

Find the array response for a 6-element uniform linear array operating at 1 GHz. The
array elements are spaced at one half the operating frequency wavelength. The incident
angle is 45 degrees azimuth and 10 degrees elevation.

fc = 1e9;

% 1 GHz wavelength

lambda = physconst("LightSpeed®)/fc;
% construct the ULA

1-105

1 Alphabetical List

hULA = phased.ULA("NumElements®,6, "ElementSpacing”, lambda/2);
% construct array response object with the ULA as sensor array
har = phased.ArrayResponse("SensorArray”,hULA);

% use step to obtain array response at 1 GHz for an incident
% angle of 45 degrees azimuth and 10 degrees elevation

resp = step(har,fc,[45;10]);

See Also

phitheta2azel | uv2azel

1-106

phased.BarrageJammer System object

phased.BarrageJammer System object

Package: phased

Barrage jammer

Description
The BarrageJammer object implements a white Gaussian noise jammer.

To obtain the jamming signal:

1 Define and set up your barrage jammer. See “Construction” on page 1-107.

2 Call step to compute the jammer output according to the properties of
phased.BarrageJdammer. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.BarrageJammer creates a barrage jammer System object, H. This object
generates a complex white Gaussian noise jamming signal.

H = phased.BarrageJammer (Name,Value) creates object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Namel,Valuel,...,.NameN,ValueN).

H = phased.BarrageJdammer (E,Name,Value) creates a barrage jammer object, H,
with the ERP property set to E and other specified property Names set to the specified
Values.

Properties
ERP
Effective radiated power

Specify the effective radiated power (ERP) (in watts) of the jamming signal as a positive
scalar.

1-107

1 Alphabetical List

Default: 5000
SamplesPerFrameSource
Source of number of samples per frame

Specify whether the number of samples of the jamming signal comes from the
SamplesPerFrame property of this object or from an input argument in step. Values of
this property are:

"Property” The SamplesPerFrame property of this object specifies
the number of samples of the jamming signal.

"Input port” An input argument in each invocation of step
specifies the number of samples of the jamming
signal.

Default: "Property”
SamplesPerFrame
Number of samples per frame

Specify the number of samples in the output jamming signal as a positive integer. This
property applies when you set the SamplesPerFrameSource property to "Property”.

Default: 100
SeedSource
Source of seed for random number generator

Specify how the object generates random numbers. Values of this property are:

"Auto” The default MATLAB random number generator produces
the random numbers. Use "Auto” if you are using this
object with Parallel Computing Toolbox™ software.

"Property” The object uses its own private random number generator
to produce random numbers. The Seed property of this
object specifies the seed of the random number generator.
Use "Property” if you want repeatable results and are
not using this object with Parallel Computing Toolbox
software.

1-108

phased.BarrageJammer System object

Default: "Auto”

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar integer between 0 and 2%~
1. This property applies when you set the SeedSource property to "Property”.

Default: O

Methods

clone

getNumlInputs
getNumOutputs

1sLocked
release
reset

step

Plot Barrage Jammer Output

Create barrage jammer object with same
property values

Number of expected inputs to step method
Number of outputs from step method

Locked status for input attributes and
nontunable properties

Allow property value and input
characteristics changes

Reset random number generator for noise
generation

Generate noise jamming signal

Create a barrage jammer with an effective radiated power of 1000W. Then plot the
magnitude of the jammer output. Your plot might vary because of random numbers.

1-109

1 Alphabetical List

Hjammer = phased.BarrageJammer("ERP",1000);
X = step(Hjammer);
plot(abs(x)); xlabel("Samples®); ylabel("Magnitude®);

a0 T T T T T T T T T

80 7

-
jau]

T

I

[y
=

T
—

Magnitude
S
—;..I

B
=]
T

G
o=
—L

3
=
T

T u |'J | '|/

Samples

References

[1] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,”
Technical Report 1015, MIT Lincoln Laboratory, December, 1994.

See Also
phased.Platform | phased.RadarTarget

1-110

clone

clone

System object: phased.BarrageJammer
Package: phased

Create barrage jammer object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1-111

1 Alphabetical List

getNumlinputs

System object: phased.BarrageJammer
Package: phased

Number of expected inputs to step method

Syntax

N = getNumlnputs(H)

Description

N = getNumlnputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) you must use when calling the step method. This value
changes when you alter properties that turn inputs on or off.

1-112

getNumOutputs

getNumOutputs

System object: phased.BarrageJammer
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)
Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1-113

1 Alphabetical List

1-114

isLocked

System object: phased.BarrageJammer
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the BarrageJammer System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

release

release

System object: phased.BarrageJammer
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1-115

1 Alphabetical List

reset

System object: phased.BarrageJammer
Package: phased

Reset random number generator for noise generation

Syntax

reset(H)

Description

reset(H) resets the states of the BarrageJammer object, H. This method resets the
random number generator state if the SeedSource property is set to "Property”.

1-116

step

step

System object: phased.BarrageJammer
Package: phased

Generate noise jamming signal

Syntax

Y = step(H)
Y = step(H,N)
Description

Y = step(H) returns a column vector, Y, that is a complex white Gaussian noise
jamming signal. The power of the jamming signal is specified by the ERP property. The
length of the jamming signal is specified by the SamplesPerFrame property. This syntax
is available when the SamplesPerFrameSource property is "Property”.

Y = step(H,N) returns the jamming signal with length N. This syntax is available
when the SamplesPerFrameSource property is " Input port-.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Plot Barrage Jammer Output

Create a barrage jammer with an effective radiated power of 1000W. Then plot the
magnitude of the jammer output. Your plot might vary because of random numbers.

Hjammer = phased.BarrageJammer("ERP",1000);

1-117

1 Alphabetical List

X = step(Hjammer);
plot(abs(x)); xlabel("Samples®); ylabel("Magnitude®);

-
=
T

2
_

&

.
=]
T

Magnitude

8

=

J

Samples

1-118

phased.BeamscanEstimator System object

phased.BeamscanEstimator System object

Package: phased

Beamscan spatial spectrum estimator for ULA

Description

The BeamscanEstimator object calculates a beamscan spatial spectrum estimate for a
uniform linear array.

To estimate the spatial spectrum:

1 Define and set up your beamscan spatial spectrum estimator. See “Construction” on
page 1-119.

2 Call step to estimate the spatial spectrum according to the properties of
phased.BeamscanEstimator. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.BeamscanEstimator creates a beamscan spatial spectrum estimator
System object, H. The object estimates the incoming signal's spatial spectrum using a
narrowband conventional beamformer for a uniform linear array (ULA).

H = phased.BeamscanEstimator(Name,Value) creates object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Namel,Valuel,...,NameN,ValueN).

Properties

SensorArray
Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a phased.ULA object.

1-119

1 Alphabetical List

1-120

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.
Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8
ForwardBackwardAveraging
Perform forward-backward averaging

Set this property to true to use forward-backward averaging to estimate the covariance
matrix for sensor arrays with conjugate symmetric array manifold.

Default: false

SpatialSmoothing

Spatial smoothing

Specify the number of averaging used by spatial smoothing to estimate the covariance
matrix as a nonnegative integer. Each additional smoothing handles one extra coherent
source, but reduces the effective number of elements by 1. The maximum value of this
property is M—2, where M is the number of sensors.

Default: O, indicating no spatial smoothing

ScanAngles

Scan angles

phased.BeamscanEstimator System object

Specify the scan angles (in degrees) as a real vector. The angles are broadside angles and
must be between —90 and 90, inclusive. You must specify the angles in ascending order.

Default: -90:90

DOAOutputPort

Enable DOA output

To obtain the signal's direction of arrival (DOA), set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the
DOA, set this property to false.

Default: false

NumSignals

Number of signals

Specify the number of signals for DOA estimation as a positive scalar integer. This
property applies when you set the DOAOutputPort property to true.

Default: 1

Methods

clone
Create beamscan spatial spectrum
estimator object with same property values
getNumlInputs
Number of expected inputs to step method
getNumQOutputs
Number of outputs from step method
isLocked
Locked status for input attributes and
nontunable properties
plotSpectrum

Plot spatial spectrum

1-121

1 Alphabetical List

1-122

release
Allow property value and input
characteristics changes

reset
Reset states of beamscan spatial spectrum
estimator object

step

Perform spatial spectrum estimation

Estimate Directions of Arrival of Two Signals
Create the signals and solve for the DOA's

Estimate the DOA's of two signals received by a 10-element ULA with element spacing
of 1 meter. The antenna operating frequency is 150 MHz. The actual direction of the first
signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the second
signal is 60 degrees in azimuth and -5 degrees in elevation.

fs = 8000; t = (0:1/fs:1).";
X1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA("NumElements*®,10, "ElementSpacing”,1);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(ha, [x1 x2],[10 20;60 -5]",fc);

noise = 0.1*(randn(size(x))+1li*randn(size(x)));

hdoa = phased.BeamscanEstimator("SensorArray”,ha,. ..
"OperatingFrequency”,fc, ...
"DOAOutputPort”,true, "NumSignals”®,b2);

[y,doas] = step(hdoa,x+noise);

doas = broadside2az(sort(doas),[20 -5])

doas =

9.5829 60.3813

Plot the beamscan spectrum

plotSpectrum(hdoa);

phased.BeamscanEstimator System object

Beamscan Spatial Spectrum

L
10 |

Fower (dB)
S

N N
|

|
|
5|
I \[

Y

|II I|

- [II| | || ||
: L Hﬂ“ "“/.\ H'-Jl l'i| | |

=20 1]

40 20 40
Broadside Angle (degrees)

References

60 80

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002, pp.

1142-1143.

See Also

broadside2az | phased.BeamscanEstimator2D

1-123

1 Alphabetical List

clone

System object: phased.BeamscanEstimator
Package: phased

Create beamscan spatial spectrum estimator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1-124

getNumlnputs

getNumlinputs

System object: phased.BeamscanEstimator
Package: phased

Number of expected inputs to step method

Syntax

N = getNumlnputs(H)

Description

N = getNumlnputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) you must use when calling the step method. This value
changes when you alter properties that turn inputs on or off.

1-125

1 Alphabetical List

getNumOutputs

System object: phased.BeamscanEstimator
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)
Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1-126

isLocked

isLocked

System object: phased.BeamscanEstimator
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the BeamscanEstimator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

1-127

1 Alphabetical List

1-128

plotSpectrum

System object: phased.BeamscanEstimator
Package: phased

Plot spatial spectrum

Syntax
plotSpectrum(H)

plotSpectrum(H,Name,Value)
h = plotSpectrum()

Description

plotSpectrum(H) plots the spatial spectrum resulting from the last call of the step
method.

plotSpectrum(H,Name,Value) plots the spatial spectrum with additional options
specified by one or more Name,Value pair arguments.

h = plotSpectrum() returns the line handle in the figure.

Input Arguments

H

Spatial spectrum estimator object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

plotSpectrum

"Normal izeResponse*

Set this value to true to plot the normalized spectrum. Set this value to False to plot
the spectrum without normalizing it.

Default: false

"Title"

String to use as title of figure.

Default: Empty string

"Unit"

The unit of the plot. Valid values are "db*", "mag”, and "pow".

Default: "db*

Estimate Directions of Arrival of Two Signals
Create the signals and solve for the DOA's

Estimate the DOA's of two signals received by a 10-element ULA with element spacing
of 1 meter. The antenna operating frequency is 150 MHz. The actual direction of the first
signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the second
signal is 60 degrees in azimuth and -5 degrees in elevation.

fs = 8000; t = (0:1/fs:1).";
x1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA("NumElements”,10, "ElementSpacing”,1);

ha_Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(ha, [x1 x2],[10 20;60 -5]",fc);

noise = 0.1*(randn(size(x))+1li*randn(size(x)));

hdoa = phased.BeamscanEstimator("SensorArray”,ha,. ..
"OperatingFrequency”,fc, ...
"DOAOutputPort”,true, "NumSignals®,2);

[y,doas] = step(hdoa,x+noise);

doas = broadside2az(sort(doas),[20 -5])

1-129

1 Alphabetical List

1-130

Fower (dB)

doas =

9.5829 60.3813

Plot the beamscan spectrum

plotSpectrum(hdoa) ;

Beamscan Spatial Spectrum

|

16 [i
14 F '
| |

12 |

L
10 |

| |
ﬁ A ﬂﬁ |
. L |

-B0 -60 -40

|II I|
BAVAR Iy
: L %A “/.\ \ |'1|

0 20 40
Broadside Angle (degrees)

60

80

release

release

System object: phased.BeamscanEstimator
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1-131

1 Alphabetical List

reset

System object: phased.BeamscanEstimator
Package: phased

Reset states of beamscan spatial spectrum estimator object

Syntax

reset(H)

Description

reset(H) resets the states of the BeamscanEstimator object, H.

1-132

step

step

System object: phased.BeamscanEstimator
Package: phased

Perform spatial spectrum estimation

Syntax

Y = step(H,X)
[Y,ANG] = step(H,X)

Description

Y = step(H,X) estimates the spatial spectrum from X using the estimator, H. X is a
matrix whose columns correspond to channels. Y is a column vector representing the
magnitude of the estimated spatial spectrum.

[Y,ANG] = step(H,X) returns additional output ANG as the signal's direction of
arrival (DOA) when the DOAOutputPort property is true. ANG is a row vector of the
estimated broadside angles (in degrees).

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Estimate the DOAs of two signals received by a standard 10-element ULA with element

spacing 1 meter. The antenna operating frequency is 150 MHz. The actual direction of

the first signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the

second signal is 60 degrees in azimuth and -5 degrees in elevation.

1-133

1 Alphabetical List

1-134

fs = 8000; t = (0:1/fs:1).";
X1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA("NumElements®,10, "ElementSpacing”,1);

ha.Element._FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(ha, [x1 x2],[10 20;60 -5]",fc);

noise = O.1*(randn(size(X))+li*randn(size(x)));

hdoa = phased.BeamscanEstimator("“SensorArray”,ha,. ..
"OperatingFrequency”,fc, ...
"DOAOutputPort”,true, "NumSignals*®,2);

[y,doas] = step(hdoa,x+noise);

doas = broadside2az(sort(doas),[20 -5]);

See Also

azel2phitheta | azel2uv

phased .BeamscanEstimator2D System object

phased.BeamscanEstimator2D System object

Package: phased

2-D beamscan spatial spectrum estimator

Description

The BeamscanEstimator2D object calculates a 2-D beamscan spatial spectrum
estimate.

To estimate the spatial spectrum:

1 Define and set up your 2-D beamscan spatial spectrum estimator. See “Construction”
on page 1-135.

2 Call step to estimate the spatial spectrum according to the properties of
phased.BeamscanEstimator2D. The behavior of step is specific to each object in
the toolbox.

Construction

H = phased.BeamscanEstimator2D creates a 2-D beamscan spatial spectrum
estimator System object, H. The object estimates the signal's spatial spectrum using a
narrowband conventional beamformer.

H = phased.BeamscanEstimator2D(Name,Value) creates object, H, with each

specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Namel,Valuel,...,NameN,ValueN).

Properties

SensorArray

Handle to sensor array

1-135

1 Alphabetical List

1-136

Specify the sensor array as a handle. The sensor array must be an array object in the
phased package. The array cannot contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.
Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8
ForwardBackwardAveraging
Perform forward-backward averaging

Set this property to true to use forward-backward averaging to estimate the covariance
matrix for sensor arrays with conjugate symmetric array manifold.

Default: false
AzimuthScanAngles
Azimuth scan angles

Specify the azimuth scan angles (in degrees) as a real vector. The angles must be
between —180 and 180, inclusive. You must specify the angles in ascending order.

Default: -90:90
ElevationScanAngles

Elevation scan angles

phased .BeamscanEstimator2D System object

Specify the elevation scan angles (in degrees) as a real vector or scalar. The angles must
be within [-90 90]. You must specify the angles in an ascending order.

Default: O
DOAOutputPort
Enable DOA output

To obtain the signal's direction of arrival (DOA), set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the
DOA, set this property to false.

Default: false
NumSignals
Number of signals

Specify the number of signals for DOA estimation as a positive scalar integer. This
property applies when you set the DOAOutputPort property to true.

Default: 1

Methods

clone
Create 2-D beamscan spatial spectrum
estimator object with same property values
getNumlInputs
Number of expected inputs to step method
getNumQOutputs
Number of outputs from step method
isLocked
Locked status for input attributes and
nontunable properties
plotSpectrum

Plot spatial spectrum

1-137

1 Alphabetical List

1-138

release
Allow property value and input
characteristics changes

reset
Reset states of 2-D beamscan spatial
spectrum estimator object

step

Perform spatial spectrum estimation

Estimate the DOAs of Two Signals

Create the signals and solve for the DOA's

Estimate the DOAs of two signals received by a 50-element URA with a rectangular
lattice. The antenna operating frequency is 150 MHz. The actual direction of the first
signal is -37 degrees in azimuth and 0 degrees in elevation. The direction of the second
signal is 17 degrees in azimuth and 20 degrees in elevation.

ha = phased.URA("Size",[5 10], "ElementSpacing”,[1 0.6]);

ha_Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

lambda = physconst("LightSpeed”)/fc;

angl = [-37; 0]; ang2 = [17; 20];

X = sensorsig(getElementPosition(ha)/lambda, 8000, [angl ang2],0.2);

hdoa = phased.BeamscanEstimator2D("SensorArray”,ha, ...
"OperatingFrequency”,fc, ...
"DOAOutputPort” ,true, "NumSignals~®,2, ...
*AzimuthScanAngles®,-50:50, ...
"ElevationScanAngles™,-30:30);

[~,doas] = step(hdoa,x)

doas =
-37 17
0 20

Plot the beamscan spatial spectrum

plotSpectrum(hdoa);

phased .BeamscanEstimator2D System object

2-D Beamscan Spatial Spectrum

35
430
25 @
:
20
15
10

40 50
Azimuth Angle (degrees)
Elevation Angle (degrees)

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also

phased.BeamscanEstimator | phitheta2azel | uv2azel

1-139

1 Alphabetical List

clone

System object: phased.BeamscanEstimator2D
Package: phased

Create 2-D beamscan spatial spectrum estimator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1-140

getNumlnputs

getNumlinputs

System object: phased.BeamscanEstimator2D
Package: phased

Number of expected inputs to step method

Syntax

N = getNumlnputs(H)

Description

N = getNumlnputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) you must use when calling the step method. This value
changes when you alter properties that turn inputs on or off.

1-141

1 Alphabetical List

getNumOutputs

System object: phased.BeamscanEstimator2D
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)
Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1-142

isLocked

isLocked

System object: phased.BeamscanEstimator2D
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the BeamscanEstimator2D
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

1-143

1 Alphabetical List

1-144

plotSpectrum

System object: phased.BeamscanEstimator2D
Package: phased

Plot spatial spectrum

Syntax
plotSpectrum(H)

plotSpectrum(H,Name,Value)
h = plotSpectrum()

Description

plotSpectrum(H) plots the spatial spectrum resulting from the last call of the step
method.

plotSpectrum(H,Name,Value) plots the spatial spectrum with additional options
specified by one or more Name,Value pair arguments.

h = plotSpectrum() returns the line handle in the figure.

Input Arguments

H

Spatial spectrum estimator object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

plotSpectrum

"Normal izeResponse*

Set this value to true to plot the normalized spectrum. Set this value to False to plot
the spectrum without normalizing it.

Default: false

"Title"

String to use as title of figure.

Default: Empty string

"Unit"

The unit of the plot. Valid values are "db*", "mag”, and "pow".

Default: "db*

Estimate the DOAs of Two Signals
Create the signals and solve for the DOA's

Estimate the DOAs of two signals received by a 50-element URA with a rectangular
lattice. The antenna operating frequency is 150 MHz. The actual direction of the first
signal is -37 degrees in azimuth and 0 degrees in elevation. The direction of the second
signal is 17 degrees in azimuth and 20 degrees in elevation.

ha = phased.URA("Size",[5 10], "ElementSpacing”,[1 0.6]);

ha_Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

lambda = physconst("LightSpeed”)/fc;

angl = [-37; 0]; ang2 = [17; 20];

X = sensorsig(getElementPosition(ha)/lambda, 8000, [angl ang2],0.2);

hdoa = phased.BeamscanEstimator2D("SensorArray”,ha, ...
"OperatingFrequency”,fc, ...
"DOAOutputPort” ,true, "NumSignals~®,2, ...
“AzimuthScanAngles*®,-50:50, ...
"ElevationScanAngles™,-30:30);

[~,doas] = step(hdoa,x)

1-145

1 Alphabetical List

1-146

doas =

-37 17
0 20

Plot the beamscan spatial spectrum

plotSpectrum(hdoa);

2-D Beamscan Spatial Spectrum

-40 50
Azimuth Angle (degrees)

Elevation Angle (degrees)

35

30

25

20

15

10

Power (dB)

release

release

System object: phased.BeamscanEstimator2D
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1-147

1 Alphabetical List

reset

System object: phased.BeamscanEstimator2D
Package: phased

Reset states of 2-D beamscan spatial spectrum estimator object

Syntax

reset(H)

Description

reset(H) resets the states of the BeamscanEstimator2D object, H

1-148

step

step

System object: phased.BeamscanEstimator2D
Package: phased

Perform spatial spectrum estimation

Syntax

Y = step(H,X)
[Y,ANG] = step(H,X)

Description

Y = step(H,X) estimates the spatial spectrum from X using the estimator H. X is a
matrix whose columns correspond to channels. Y is a matrix representing the magnitude
of the estimated 2-D spatial spectrum. Y has a row dimension equal to the number of
elevation angles specified in ElevationScanAngles and a column dimension equal to
the number of azimuth angles specified in AzimuthScanAngles.

[Y,ANG] = step(H,X) returns additional output ANG as the signal’s direction of
arrival (DOA) when the DOAOutputPort property is true. ANG is a two row matrix
where the first row represents the estimated azimuth and the second row represents the
estimated elevation (in degrees).

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Estimate the DOAs of two signals received by a 50-element URA with a rectangular
lattice. The antenna operating frequency is 150 MHz. The actual direction of the first

1-149

1 Alphabetical List

1-150

signal is —37 degrees in azimuth and 0 degrees in elevation. The direction of the second
signal is 17 degrees in azimuth and 20 degrees in elevation.

ha = phased.URA("Size",[5 10], "ElementSpacing”,[1 0.6]);

ha.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

lambda = physconst("LightSpeed®)/fc;

angl = [-37; 0]; ang2 = [17; 20];

X = sensorsig(getElementPosition(ha)/lambda,8000,[angl ang2],0.2);

hdoa = phased.BeamscanEstimator2D("SensorArray”,ha,...
"OperatingFrequency”,fc, ...
"DOAOutputPort*,true, "NumSignals®,2, ...
“AzimuthScanAngles*®,-50:50, ...
"ElevationScanAngles”®,-30:30);

[~,doas] = step(hdoa,x);

See Also

azel2phitheta | azel2uv

phased.BeamspaceESPRITEstimator System object

phased.BeamspaceESPRITEstimator System object

Package: phased

Beamspace ESPRIT direction of arrival (DOA) estimator

Description

The BeamspaceESPRITEstimator object computes a DOA estimate for a uniform
linear array. The computation uses the estimation of signal parameters via rotational
invariance techniques (ESPRIT) algorithm in beamspace.

To estimate the direction of arrival (DOA):

1 Define and set up your DOA estimator. See “Construction” on page 1-151.

2 Call step to estimate the DOA according to the properties of
phased.BeamspaceESPRITEstimator. The behavior of step is specific to each
object in the toolbox.

Construction

H = phased.BeamspaceESPRITEstimator creates a beamspace ESPRIT DOA
estimator System object, H. The object estimates the signal's direction of arrival using
the beamspace ESPRIT algorithm with a uniform linear array (ULA).

H = phased.BeamspaceESPRITEstimator(Name,Value) creates object, H, with each

specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Namel,Valuel,...,NameN,ValueN).

Properties

SensorArray
Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a phased.ULA object.

1-151

1 Alphabetical List

1-152

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.
Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8
SpatialSmoothing
Spatial smoothing

Specify the number of averaging used by spatial smoothing to estimate the covariance
matrix as a nonnegative integer. Each additional smoothing handles one extra coherent
source, but reduces the effective number of element by 1. The maximum value of this
property is M—2, where M is the number of sensors.

Default: O, indicating no spatial smoothing
NumSignalsSource
Source of number of signals

Specify the source of the number of signals as one of "Auto® or "Property”. If you set
this property to "Auto”, the number of signals is estimated by the method specified by
the NumSignalsMethod property.

Default: "Auto”
NumSignalsMethod

Method to estimate number of signals

phased.BeamspaceESPRITEstimator System object

Specify the method to estimate the number of signals as one of "AIC" or "MDL". "AIC*
uses the Akaike Information Criterion and *"MDL" uses Minimum Description Length
Criterion. This property applies when you set the NumSignalsSource property to
"Auto”.

Default: "AIC*
NumSignals
Number of signals

Specify the number of signals as a positive integer scalar. This property applies when you
set the NumSignalsSource property to "Property”

Default: 1
Method
Type of least square method

Specify the least squares method used for ESPRIT as one of "TLS" or "LS". "TLS" refers
to total least squares and "LS" refers to least squares.

Default: "TLS*
BeamFanCenter
Beam fan center direction (in degrees)

Specify the direction of the center of the beam fan (in degrees) as a real scalar value
between —90 and 90. This property is tunable.

Default: O
NumBeamsSource
Source of number of beams

Specify the source of the number of beams as one of "Auto” or "Property”. If you set
this property to "Auto”, the number of beams equals N-L, where N is the number of
array elements and L is the value of the SpatialSmoothing property.

Default: "Auto”

1-153

1 Alphabetical List

NumBeams
Number of beams

Specify the number of beams as a positive scalar integer. The lower the number of beams,
the greater the reduction in computational cost. This property applies when you set the
NumBeamsSource to "Property”.

Default: 2

Methods

clone
Create beamspace ESPRIT DOA estimator
object with same property values
getNumlInputs
Number of expected inputs to step method
getNumOutputs
Number of outputs from step method
isLocked
Locked status for input attributes and
nontunable properties
release
Allow property value and input
characteristics changes
step
Perform DOA estimation
Examples

Estimate the DOAs of two signals received by a standard 10-element ULA with element
spacing 1 meter. The antenna operating frequency is 150 MHz. The actual direction of
the first signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the
second signal is 45 degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).";

1-154

phased.BeamspaceESPRITEstimator System object

X1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);

ha = phased.ULA("NumElements®,10, "ElementSpacing”,1);

ha.Element._FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(ha, [x1 x2],[10 20;45 60]",fc);

rng default;

noise = 0.1/sgrt(2)*(randn(size(x))+li*randn(size(x)));

% construct beamspace ESPRIT estimator

hdoa = phased.BeamspaceESPRITEstimator("SensorArray”,ha, ...
"OperatingFrequency”,fc, ...
"NumSignalsSource”, "Property”, "NumSignals®,2);

% use the step method to obtain the direction of arrival estimates

doas = step(hdoa,x+noise);

az = broadside2az(sort(doas),[20 60]);

References
[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
broadside2az | phased.ESPRITEstimator

1-155

1 Alphabetical List

clone

System object: phased.BeamspaceESPRITEstimator
Package: phased

Create beamspace ESPRIT DOA estimator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1-156

getNumlnputs

getNumlinputs

System object: phased.BeamspaceESPRITEstimator
Package: phased

Number of expected inputs to step method

Syntax

N = getNumlnputs(H)

Description

N = getNumlnputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) you must use when calling the step method. This value
changes when you alter properties that turn inputs on or off.

1-157

1 Alphabetical List

getNumOutputs

System object: phased.BeamspaceESPRITEstimator
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)
Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1-158

isLocked

isLocked

System object: phased.BeamspaceESPRITEstimator
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the
BeamspaceESPRITEstimator System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

1-159

1 Alphabetical List

1-160

release

System object: phased.BeamspaceESPRITEstimator
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

step

step

System object: phased.Beamspace ESPRITEstimator
Package: phased

Perform DOA estimation

Syntax

ANG = step(H,X)

Description

ANG = step(H,X) estimates the DOAs from X using the DOA estimator H. X is a
matrix whose columns correspond to channels. ANG is a row vector of the estimated
broadside angles (in degrees).

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Estimate the DOAs of two signals received by a standard 10-element ULA with element
spacing 1 meter. The antenna operating frequency is 150 MHz. The actual direction of
the first signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the
second signal is 45 degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).";
X1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA("NumElements®,10, "ElementSpacing”,1);

ha.Element._FrequencyRange = [100e6 300e6];
fc = 150e6;

1-161

1 Alphabetical List

x = collectPlaneWave(ha, [x1 x2],[10 20;45 60]",fc);

rng default;

noise = 0.1/sgrt(2)*(randn(size(x))+li*randn(size(x)));

% construct beamspace ESPRIT estimator

hdoa = phased.BeamspaceESPRITEstimator("SensorArray”,ha, ...
"OperatingFrequency”,fc, ...
"NumSignalsSource”, "Property”, "NumSignals®,2);

% use the step method to obtain the direction of arrival estimates

doas = step(hdoa,x+noise);

az = broadside2az(sort(doas),[20 60]);

1-162

phased.CFARDetector System object

phased.CFARDetector System object

Package: phased

Constant false alarm rate (CFAR) detector

Description
The CFARDetector object implements a constant false-alarm rate detector.

To perform the detection:

1 Define and set up your CFAR detector. See “Construction” on page 1-163.

2 Call step to perform CFAR detection according to the properties of
phased.CFARDetector. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.CFARDetector creates a constant false alarm rate (CFAR) detector
System object, H. The object performs CFAR detection on the input data.

H = phased.CFARDetector(Name,Value) creates object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Namel,Valuel,...,NameN,ValueN).

Properties

Method
CFAR algorithm

Specify the algorithm of the CFAR detector as a string. Values of this property are:

"CA* Cell-averaging CFAR
"GOCA* Greatest-of cell-averaging CFAR

1-163

1 Alphabetical List

1-164

"0S*" Order statistic CFAR

"SOCA* Smallest-of cell-averaging CFAR

Default: "CA*
Rank
Rank of order statistic

Specify the rank of the order statistic as a positive integer scalar. The value must be less
than or equal to the value of the NumTrainingCel Is property. This property applies
only when you set the Method property to "0S*".

Default: 1
NumGuardCells
Number of guard cells

Specify the number of guard cells used in training as an even integer. This property
specifies the total number of cells on both sides of the cell under test.

Default: 2, indicating that there is one guard cell at both the front and back of the cell
under test

NumTrainingCells
Number of training cells

Specify the number of training cells used in training as an even integer. Whenever
possible, the training cells are equally divided before and after the cell under test.

Default: 2, indicating that there is one training cell at both the front and back of the cell
under test

ThresholdFactor
Methods of obtaining threshold factor

Specify whether the threshold factor comes from an automatic calculation, the
CustomThresholdFactor property of this object, or an input argument in step. Values of
this property are:

phased.CFARDetector System object

"Auto” The application calculates the threshold factor
automatically based on the desired probability of
false alarm specified in the ProbabilityFalseAlarm
property. The calculation assumes each independent
signal in the input is a single pulse coming out of a
square law detector with no pulse integration. The
calculation also assumes the noise is white Gaussian.

"Custom*® The CustomThresholdFactor property of this object
specifies the threshold factor.

"Input port- An input argument in each invocation of step
specifies the threshold factor.

Default: "Auto”
ProbabilityFalseAlarm
Desired probability of false alarm

Specify the desired probability of false alarm as a scalar between 0 and 1 (not inclusive).
This property applies only when you set the ThresholdFactor property to "Auto”.

Default: 0.1
CustomThresholdFactor
Custom threshold factor

Specify the custom threshold factor as a positive scalar. This property applies only when
you set the ThresholdFactor property to "Custom®. This property is tunable.

Default: 1
ThresholdOutputPort
Output detection threshold

To obtain the detection threshold, set this property to true and use the corresponding
output argument when invoking step. If you do not want to obtain the detection
threshold, set this property to false.

Default: false

1-165

1 Alphabetical List

1-166

Methods

clone
Create CFAR detector object with same
property values
getNumlInputs
Number of expected inputs to step method
getNumQOutputs
Number of outputs from step method
isLocked
Locked status for input attributes and
nontunable properties
release
Allow property value and input
characteristics changes
step
Perform CFAR detection
Examples

Perform cell-averaging CFAR detection on a given Gaussian noise vector with a desired
probability of false alarm of 0.1. Assume that the data is from a square law detector and
no pulse integration is performed. Use 50 cells to estimate the noise level and 1 cell to
separate the test cell and training cells. Perform the detection on all cells of input.

rng(5);

hdet = phased.CFARDetector("NumTrainingCells”®,50,. ..
"NumGuardCells”,2, "ProbabilityFalseAlarm®,0.1);

N = 1000; x = 1/sqrt(2)*(randn(N,1)+li*randn(N,1));

dresult = step(hdet,abs(x).”2,1:N);

Pfa = sum(dresult)/N;

Algorithms

phased.CFARDetector uses cell averaging in three steps:

phased.CFARDetector System object

1 Identify the training cells from the input, and form the noise estimate. The next
table indicates how the detector forms the noise estimate, depending on the Method
property value.

Method Noise Estimate
"CA* Use the average of the values in all the training cells.
"GOCA* Select the greater of the averages in the front training cells

and rear training cells.

"0s* Sort the values in the training cells in ascending order. Select
the Nth item, where IV is the value of the Rank property.

"SOCA* Select the smaller of the averages in the front training cells
and rear training cells.

2 Multiply the noise estimate by the threshold factor to form the threshold.

3 Compare the value in the test cell against the threshold to determine whether the

target is present or absent. If the value is greater than the threshold, the target is
present.

For further details, see [1].
References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

See Also

npwgnthresh | phased.MatchedFilter | phased.TimeVaryingGain

1-167

1 Alphabetical List

clone

System object: phased. CFARDetector
Package: phased

Create CFAR detector object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1-168

getNumlnputs

getNumlinputs

System object: phased. CFARDetector
Package: phased

Number of expected inputs to step method

Syntax

N = getNumlnputs(H)

Description

N = getNumlnputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) you must use when calling the step method. This value
changes when you alter properties that turn inputs on or off.

1-169

1 Alphabetical List

getNumOutputs

System object: phased. CFARDetector
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)
Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1-170

isLocked

isLocked

System object: phased. CFARDetector
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description
TF = isLocked(H) returns the locked status, TF, for the CFARDetector System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

1-171

1 Alphabetical List

release

System object: phased. CFARDetector
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1-172

step

step

System object: phased. CFARDetector
Package: phased

Perform CFAR detection

Syntax

Y = step(H,X,CUTIDX)
Y = step(H,X,CUTIDX,THFAC)
[Y,TH] = step(_)

Description

Y = step(H,X,CUTIDX) performs the CFAR detection on the real input data X. X can
be either a column vector or a matrix. Each row of X is a cell and each column of X is
independent data. Detection is performed along each column for the cells specified in
CUTIDX. CUTIDX must be a vector of positive integers with each entry specifying the
index of a cell under test (CUT). Y is an M-by-N matrix containing the logical detection
result for the cells in X. M is the number of indices specified in CUTIDX, and N is the
number of independent signals in X.

Y = step(H,X,CUTIDX, THFAC) uses THFAC as the threshold factor used to calculate
the detection threshold. This syntax is available when you set the ThresholdFactor
property to " Input port”". THFAC must be a positive scalar.

[Y,TH] = step() returns additional output, TH, as the detection
threshold for each cell under test in X. This syntax is available when you set the
ThresholdOutputPort property to true. TH has the same dimensionality as Y.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

1-173

1 Alphabetical List

1-174

nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Perform cell-averaging CFAR detection on a given Gaussian noise vector with a desired
probability of false alarm of 0.1. Assume that the data is from a square law detector and
no pulse integration is performed. Use 50 cells to estimate the noise level and 1 cell to
separate the test cell and training cells. Perform the detection on all cells of input.

rng(5);

hdet = phased.CFARDetector(“NumTrainingCells®,50,. ..
"NumGuardCells®,2, "ProbabilityFalseAlarm®,0.1);

N = 1000; x = 1/sqrt(2)*(randn(N,1)+li*randn(N,1));

dresult = step(hdet,abs(x).-"2,1:N);

Pfa = sum(dresult)/N;

Algorithms

phased.CFARDetector uses cell averaging in three steps:

1 Identify the training cells from the input, and form the noise estimate. The next
table indicates how the detector forms the noise estimate, depending on the Method
property value.

Method Noise Estimate
"CA* Use the average of the values in all the training cells.
"GOCA* Select the greater of the averages in the front training cells

and rear training cells.

"0s- Sort the values in the training cells in ascending order. Select
the Nth item, where N is the value of the Rank property.

"SOCA* Select the smaller of the averages in the front training cells
and rear training cells.

2 Multiply the noise estimate by the threshold factor to form the threshold.
3 Compare the value in the test cell against the threshold to determine whether the

target is present or absent. If the value is greater than the threshold, the target is
present.

step

For details, see [1].

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

1-175

1 Alphabetical List

1-176

phased.Collector System object

Package: phased

Narrowband signal collector

Description
The Col lector object implements a narrowband signal collector.

To compute the collected signal at the sensor(s):

1 Define and set up your signal collector. See “Construction” on page 1-176.

2 Call step to collect the signal according to the properties of phased.Collector.
The behavior of step is specific to each object in the toolbox.

Construction

H = phased.Collector creates a narrowband signal collector System object, H. The
object collects incident narrowband signals from given directions using a sensor array or
a single element.

H = phased.Collector(Name,Value) creates a collector object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Namel,Valuel,...,NameN,ValueN).

Properties

Sensor
Sensor element or sensor array

Sensor element or sensor array specified as a System object in the Phased Array System
Toolbox™. A sensor array can contain subarrays.

Default: phased.ULA with default property values

phased.Collector System object

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.
Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8
WeightslnputPort
Enable weights input

To specify weights, set this property to true and use the corresponding input argument
when you invoke step. If you do not want to specify weights, set this property to false.

Default: false
EnablePolarization
EnablePolarization

Set this property to true to simulate the collection of polarized waves. Set this property
to False to ignore polarization. This property applies when the sensor specified in the
Sensor property is capable of simulating polarization.

Default: false

Wavefront

Type of incoming wavefront

Specify the type of incoming wavefront as one of "Plane”, or "Unspecified":

+ If you set the Wavefront property to "Plane”, the input signals are multiple plane
waves impinging on the entire array. Each plane wave is received by all collecting

1-177

1 Alphabetical List

elements. If the Sensor property is an array that contains subarrays, the Wavefront
property must be "Plane”.

+ If you set the Wavefront property to "Unspecified”, the input signals are
individual waves impinging on individual sensors.

Default: "Plane™”

Methods

clone
Create collector object with same property
values
getNumlnputs
Number of expected inputs to step method
getNumOutputs
Number of outputs from step method
isLocked
Locked status for input attributes and
nontunable properties
release
Allow property value and input
characteristics changes
step
Collect signals
Examples

Collect signal with a single antenna.

ha = phased. IsotropicAntennaElement;

hc = phased.Collector("Sensor”®,ha, "OperatingFrequency”,1e9);
x = [1;1];

incidentAngle = [10 30]°;

y = step(hc, X, incidentAngle);

Collect a far field signal with a 5-element array.

1-178

phased.Collector System object

ha = phased.ULA("NumElements®,5);

hc = phased.Collector("Sensor”®,ha, "OperatingFrequency”,1e9);
x = [1;1];

incidentAngle = [10 30]";

y = step(hc, X, incidentAngle);

Collect signals with a 3-element array. Each antenna collects a separate input signal
from a separate direction.

ha
hc

phased.ULA("NumElements®,3);

phased.Collector("Sensor”,ha, "OperatingFrequency”,1e9, ...
"Wavefront®, "Unspecified”);

X = rand(10,3); % Each column is a separate signal for one element
incidentAngle = [10 0; 20 5; 45 2]"; % 3 angles for 3 signals

y = step(hc,Xx, incidentAngle);

Algorithms

If the Wavefront property value is "Plane”, phased.Col lector collects each plane
wave signal using the phase approximation of the time delays across collecting elements
in the far field.

If the Wavefront property value is "Unspecified”, phased.Col lector collects each
channel independently.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phased.WidebandCollector

1-179

1 Alphabetical List

clone

System object: phased.Collector
Package: phased

Create collector object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1-180

getNumlnputs

getNumlinputs

System object: phased.Collector
Package: phased

Number of expected inputs to step method

Syntax

N = getNumlnputs(H)

Description

N = getNumlnputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) you must use when calling the step method. This value
changes when you alter properties that turn inputs on or off.

1-181

1 Alphabetical List

getNumOutputs

System object: phased.Collector
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)
Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1-182

isLocked

isLocked

System object: phased.Collector
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description
TF = isLocked(H) returns the locked status, TF, for the Col lector System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

1-183

1 Alphabetical List

release

System object: phased.Collector
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1-184

step

step

System object: phased.Collector
Package: phased

Collect signals

Syntax

step(H, X,ANG)

step(H, X,ANG, LAXES)
step(H,X,ANG,WEIGHTS)

step(H,X,ANG, STEERANGLE)
step(H,X,ANG, LAXES ,WEIGHTS, STEERANGLE)

<< <<=

Description

Y = step(H,X,ANG) collects signals X arriving from directions ANG. The collection
process depends on the Wavefront property of H, as follows:

+ If Wavefront has the value "Plane”, each collecting element collects all the far field
signals in X. Each column of Y contains the output of the corresponding element in
response to all the signals in X.

+ If Wavefront has the value "Unspecified”, each collecting element collects
only one impinging signal from X. Each column of Y contains the output of
the corresponding element in response to the corresponding column of X. The
"Unspecified” option is available when the Sensor property of H does not contain
subarrays.

Y = step(H,X,ANG,LAXES) uses LAXES as the local coordinate system axes
directions. This syntax is available when you set the EnablePolarization property to
true.

Y = step(H,X,ANG,WEIGHTS) uses WEIGHTS as the weight vector. This syntax is
available when you set the WeightslnputPort property to true.

Y = step(H,X,ANG,STEERANGLE) uses STEERANGLE as the subarray steering
angle. This syntax is available when you configure H so that H.Sensor is an array that
contains subarrays and H.Sensor .SubarraySteering is either "Phase” or "Time".

1-185

1 Alphabetical List

1-186

Y = step(H,X,ANG,LAXES,WEIGHTS,STEERANGLE) combines all input arguments.
This syntax is available when you configure H so that H.WeightsInputPort is true,
H.Sensor is an array that contains subarrays, and H.Sensor .SubarraySteering is
either "Phase” or "Time".

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments
H

Collector object.

X

Arriving signals. Each column of X represents a separate signal. The specific
interpretation of X depends on the Wavefront property of H.

Wavefront Property Description

Value

"Plane” Each column of X is a far field signal.

"Unspecified” Each column of X is the signal impinging on the corresponding
element. In this case, the number of columns in X must equal
the number of collecting elements in the Sensor property.

+ Ifthe EnablePolarization property value is set to false, X is a matrix. The
number of columns of the matrix equals the number of separate signals.

+ Ifthe EnablePolarization property value is set to true, X is a row vector of
MATLAB struct type. The dimension of the struct array equals the number of
separate signals. Each struct member contains three column-vector fields, X, Y, and
Z, representing the x, y, and z components of the polarized wave vector signals in the
global coordinate system.

step

ANG

Incident directions of signals, specified as a two-row matrix. Each column specifies the
incident direction of the corresponding column of X. Each column of ANG has the form
[azimuth; elevation], in degrees. The azimuth angle must be between —180 and 180

degrees, inclusive. The elevation angle must be between —90 and 90 degrees, inclusive.

LAXES

Local coordinate system. LAXES is a 3-by-3 matrix whose columns specify the local
coordinate system's orthonormal x, y, and z axes, respectively. Each axis is specified in
terms of [X;y;z] with respect to the global coordinate system. This argument is only
used when the EnablePolarization property is set to true.

WEIGHTS

Vector of weights. WEIGHTS is a column vector of length M, where M is the number of
collecting elements.

Default: ones(M, 1)
STEERANGLE

Subarray steering angle, specified as a length-2 column vector. The vector has the form
[azimuth; elevation], in degrees. The azimuth angle must be between —180 and 180
degrees, inclusive. The elevation angle must be between —90 and 90 degrees, inclusive.

Output Arguments
Y

Collected signals. Each column of Y contains the output of the corresponding element.
The output is the response to all the signals in X, or one signal in X, depending on the
Wavefront property of H.

Examples

Construct a 4-element uniform linear array. The array operating frequency is 1 GHz. The
array element spacing is half the operating frequency wavelength. Model the collection of

1-187

1 Alphabetical List

1-188

a 200-Hz sine wave incident on the array from 45 degrees azimuth, 10 degrees elevation
from the far field.

fc = 1e9;

lambda = physconst("LightSpeed®)/fc;

hULA = phased.ULA("NumElements”,4, "ElementSpacing”, lambdas2);

t = linspace(0,1,1e3);

X = cos(2*pi*200*t) " ;

% construct the collector object.

hc = phased.Collector("Sensor”,hULA, ...
"PropagationSpeed” ,physconst("LightSpeed®), ...
"Wavefront®,"Plane”, "OperatingFrequency”,fc);

% @ncident angle is 45 degrees azimuth, 10 degrees elevation

incidentangle = [45;10];

% collect the incident waveform at the ULA

receivedsig = step(hc,x, incidentangle);

Algorithms
If the Wavefront property value is "Plane”, phased.Col lector collects each plane
wave signal using the phase approximation of the time delays across collecting elements

in the far field.

If the Wavefront property value is "Unspecified”, phased.Col lector collects each
channel independently.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also

phitheta2azel | uv2azel

phased.Conformal Array System object

phased.ConformalArray System object

Package: phased

Conformal array

Description

The ConformalArray object constructs a conformal array. A conformal array can have
elements in any position pointing in any direction.

To compute the response for each element in the array for specified directions:

1 Define and set up your conformal array. See “Construction” on page 1-189.

2 Call step to compute the response according to the properties of
phased.ConformalArray. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.ConformalArray creates a conformal array System object, H. The object
models a conformal array formed with identical sensor elements.

H = phased.ConformalArray(Name,Value) creates object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Namel,Valuel,...,NameN,ValueN).

H = phased.ConformalArray(POS,NV,Name,Value) creates a conformal array
object, H, with the ElementPosition property set to POS, the ElementNormal property
set to NV, and other specified property Names set to the specified Values. POS and NV
are value-only arguments. When specifying a value-only argument, specify all preceding
value-only arguments. You can specify name-value arguments in any order.

Properties

Element

Element of array

1-189

1 Alphabetical List

1-190

Specify the element of the sensor array as a handle. The element must be an element
object in the phased package.

Default: Isotropic antenna element with default properties
ElementPosition
Element positions

ElementPosition specifies the positions of the elements in the conformal array.
ElementPosition must be a 3-by-N matrix, where N indicates the number of elements
in the conformal array. Each column of ElementPosition represents the position, in
the form [Xx; y; z] (in meters), of a single element in the local coordinate system of the
array. The local coordinate system has its origin at an arbitrary point. The default value
of this property represents a single element at the origin of the local coordinate system.

Default: [0; 0; O]
ElementNormal
Element normal directions

ElementNormal specifies the normal directions of the elements in the conformal array.
Angle units are degrees. The value assigned to ElementNormal must be either a 2-by-N
matrix or a 2-by-1 column vector. The variable N indicates the number of elements in
the array. If the value of ElementNormal is a matrix, each column specifies the normal
direction of the corresponding element in the form [azimuth;elevation] with respect
to the local coordinate system. The local coordinate system aligns the positive x-axis with
the direction normal to the conformal array. If the value of ElementNormal is a 2-by-1
column vector, it specifies the same pointing direction for all elements in the array.

You can use the ElementPosition and ElementNormal properties to represent
any arrangement in which pairs of elements differ by certain transformations. The
transformations can combine translation, azimuth rotation, and elevation rotation.
However, you cannot use transformations that require rotation about the normal.
Default: [0; O]

Taper

Element taper or weighting

phased.Conformal Array System object

Element tapering or weighting, specified as a complex-valued scalar, 1-by-N row
vector, or N-by-1 column vector. Weights are applied to each element in the sensor
array. N is the number of elements along in the array as determined by the size of the
ElementPosition property. If the Taper parameter is a scalar, the same taper value is
applied to all elements. If the value of Taper is a vector, each taper values is applied to

the corresponding element.

Default: 1

Methods

clone

directivity
collectPlaneWave
getElementPosition
getNumElements
getNumlnputs
getNumOutputs
getTaper

isLocked

isPolarizationCapable

pattern

Create conformal array object with same
property values

Directivity of conformal array

Simulate received plane waves

Positions of array elements

Number of elements in array

Number of expected inputs to step method
Number of outputs from step method
Array element tapers

Locked status for input attributes and
nontunable properties

Polarization capability

Plot conformal array pattern

1-191

1 Alphabetical List

1-192

patternAzimuth
Plot conformal array directivity or pattern
versus azimuth
patternElevation
Plot conformal array array directivity or
pattern versus elevation
plotResponse
Plot response pattern of array
release
Allow property value and input
characteristics changes
step
Output responses of array elements
viewArray
View array geometry
Examples

Plot Power Pattern of 8-Element Uniform Circular Array

Using the ConformalArray System object, construct an 8-element uniform circular array
(UCA) of isotropic antenna elements. Plot a normalized azimuth power pattern at 0
degrees elevation. Assume the operating frequency is 1 GHz and the wave propagation
speed is the speed of light.

N = 8;

azang = (0:N-1)*360/N-180;

sCA = phased.ConformalArray(.-.
"ElementPosition”, [cosd(azang);sind(azang);zeros(1,N)],---
"ElementNormal ", [azang;zeros(1,N)]);

fc = 1e9;

c = physconst("LightSpeed™);

pattern(sCA,fc,[-180:180],0,--.
"PropagationSpeed®,c, "Type~, "powerdb”, . ..
"CoordinateSystem”, "polar™)

phased.Conformal Array System object

Azimuth Cut (elevation angle = 0.0)

Mormalized Power (dB)

Mormalized Power (dB), Broadside at 0.00 degrees

Plot Pattern of 31-Element Uniform Circular Sonar Array

Construct a 31-element acoustic uniform circular sonar array (UCA) using the
ConformalArray System object. Assume the array is one meter in diameter. Using
the ElevationAngles parameter, restrict the display to +/-40 degrees in 0.1 degree
increments. Assume the operating frequency is 4 kHz. A typical value for the speed of
sound in seawater is 1500.0 m/s.

Construct the array

N = 31;

theta = (0:N-1)*360/N-180;

Radius = 0.5;

sMic = phased.OmnidirectionalMicrophoneElement(. ..

1-193

1 Alphabetical List

"FrequencyRange”,[0,10000], "BackBaffled",true);
sArray = phased.ConformalArray("Element”,sMic, ...

"ElementPosition”,Radius*[zeros(1,N);cosd(theta);sind(theta)],- - -

“ElementNormal ", [ones(1,N);zeros(1,N)]);
Plot the magnitude pattern

fc = 4000;

c = 1500.0;

pattern(sArray,fc,0,[-40:0.1:40], - ..
"PropagationSpeed”,c, ...
"CoordinateSystem”, "polar”, ...
"Type*®,"efield")

Elevation Cut (azimuth angle = 0.0)
90
.1

\ L D,

Normalized Magnitude

Mormalized Magnitude, Broadside at 0.00 degrees

1-194

phased.Conformal Array System object

Plot the directivity pattern

pattern(sArray,fc,0,[-40:0.1:40], ...
"PropagationSpeed”,c, ...
"CoordinateSystem”, "polar”, ...
"Type*®,"directivity")

Elevation Cut (azimuth angle = 0.0°)

SR

Directivity (dBi), Broadside at 0.00 degrees
Phased Array Gallery

References

[1] Josefsson, L. and P. Persson. Conformal Array Antenna Theory and Design.
Piscataway, NdJ: IEEE Press, 2006.

1-195

../examples/phased-array-gallery.html

1 Alphabetical List

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also

phased.UCA | phased.CosineAntennaElement | phased.CustomAntennakElement
| phased. IsotropicAntennaElement | phased.PartitionedArray |
phased.ReplicatedSubarray | phased.ULA | phased.URA | phitheta2azel |
uv2azel

1-196

clone

clone

System object: phased.ConformalArray
Package: phased

Create conformal array object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1-197

1 Alphabetical List

1-198

directivity

System object: phased.ConformalArray
Package: phased

Directivity of conformal array

D = directivity(H,FREQ,ANGLE)
D = directivity(H,FREQ,ANGLE,Name,Value)
Description

D = directivity(H,FREQ,ANGLE) computes the “Directivity” on page 1-201 of a
conformal array of antenna or microphone elements, H, at frequencies specified by the
FREQ and in angles of direction specified by the ANGLE.

D = directivity(H,FREQ,ANGLE,Name,Value) computes the directivity with
additional options specified by one or more Name,Value pair arguments.

Input Arguments

H — Conformal array
System object

Conformal array specified as a phased.ConformalArray System object.

Example: H = phased.ConformalArray;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

* For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the

directivity

element. Otherwise, the element produces no response and the directivity is
returned as —Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement,
which use the FrequencyVector property.

* For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as —Inf.

Example: [1e8 2e8]
Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between —180° and 180°.
The elevation angle must lie between —90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.

Example: [45 60; 0 10]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"PropagationSpeed” — Signal propagation speed
speed of light (default) | positive scalar

1-199

1 Alphabetical List

1-200

Signal propagation speed, specified as the comma-separated pair consisting of
"PropagationSpeed” and a positive scalar in meters per second.

Example: "PropagationSpeed” ,physconst("LightSpeed”)
Data Types: double

"Weights" — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of *"Weights' and an
N-by-1 complex-valued column vector or N-by-L complex-valued matrix. Array weights
are applied to the elements of the array to produce array steering, tapering, or both. The
dimension N is the number of elements in the array. The dimension L is the number of
frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose

N-by-1 complex-valued Scalar or 1-by-L row vector |Applies a set of weights for

column vector the single frequency or for all
L frequencies.

N-by-L complex-valued 1-by-L row vector Applies each of the L

matrix columns of "Weights” for
the corresponding frequency
in FREQ.

Example: "Weights® ,ones(N,M)

Data Types: double
Complex Number Support: Yes

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the
M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

directivity

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element

or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

Urad (95 (P)

D=4rn
P total

where U,,q(0,9) is the radiant intensity of a transmitter in the direction (6,p) and Py
1s the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox™ antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of Conformal Array

Compute the directivity of a circular array constructed using a conformal array System
object™.,

1-201

1 Alphabetical List

1-202

Construct a 21-element uniform circular sonar array (UCA) of backbaffled
omnidirectional microphones. The array is one meter in diameter. Set the operating
frequency to 4 kHz. A typical value for the speed of sound in seawater is 1500.0 m/s.

N = 21;

theta = (0:N-1)*360/N-180;

Radius = 0.5;

myMic = phased.OmnidirectionalMicrophoneElement;
myMicFrequencyRange = [0,5000];
myMic.BackBaffled = true;

myArray = phased.ConformalArray;

myArray.Element = myMic;

myArray.ElementPosition = Radius*[zeros(1,N);cosd(theta);sind(theta)];
myArray.ElementNormal = [ones(1,N);zeros(1,N)];
c = 1500.0;

fc = 4000;

Steer the array to 30 degrees in azimuth and compute the directivity in the steering
direction.

lambda = c/fc;
ang = [30;0];
w = steervec(getElementPosition(myArray)/lambda,ang);
d = directivity(myArray,fc,ang, - ..
"PropagationSpeed”,c, ...
"Weights™,w)

15.1633

See Also

phased.ConformalArray.pattern | phased.ConformalArray.patternAzimuth |
phased.ConformalArray.patternElevation

collectPlaneWave

collectPlaneWave

System object: phased.ConformalArray
Package: phased

Simulate received plane waves

Syntax

Y = collectPlaneWave(H, X,ANG)

Y = collectPlaneWave(H,X,ANG, FREQ)

Y = collectPlaneWave(H, X,ANG, FREQ,C)

Description
Y = collectPlaneWave(H, X,ANG) returns the received signals at the sensor array, H,
when the input signals indicated by X arrive at the array from the directions specified in

ANG.

Y = collectPlaneWave(H, X,ANG, FREQ), in addition, specifies the incoming signal
carrier frequency in FREQ.

Y = collectPlaneWave(H, X,ANG, FREQ,C), in addition, specifies the signal
propagation speed in C.

Input Arguments

H
Array object.
X

Incoming signals, specified as an M-column matrix. Each column of X represents an
individual incoming signal.

1-203

1 Alphabetical List

1-204

ANG

Directions from which incoming signals arrive, in degrees. ANG can be either a 2-by-M
matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of arrival of the
corresponding signal in X. Each column of ANG is in the form [azimuth; elevation].
The azimuth angle must be between —180° and 180°, inclusive. The elevation angle must
be between —90° and 90°, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0°.

FREQ

Carrier frequency of signal in hertz. FREQ must be a scalar.
Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output Arguments
Y

Received signals. Y is an N-column matrix, where N is the number of elements in the
array H. Each column of Y is the received signal at the corresponding array element,
with all incoming signals combined.

Examples

Simulate the received signal at an 8-element uniform circular array.

The signals arrive from 10 degrees and 30 degrees azimuth. Both signals have an
elevation angle of 0 degrees. Assume the propagation speed is the speed of light and the
carrier frequency of the signal is 100 MHz.

collectPlaneWave

N = 8; azang = (0:N-1)*360/N-180;

hArray = phased.ConformalArray(..-.
"ElementPosition”, [cosd(azang);sind(azang);zeros(1,N)], - --
"ElementNormal ", [azang;zeros(1,N)]);

y = collectPlaneWave(hArray,randn(4,2),[10 30],1e8);

Algorithms

collectPlaneWave modulates the input signal with a phase corresponding to the
delay caused by the direction of arrival. The method does not account for the response of
individual elements in the array.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also

phitheta2azel | uv2azel

1-205

1 Alphabetical List

1-206

getElementPosition

System object: phased.ConformalArray
Package: phased

Positions of array elements

Syntax

POS = getElementPosition(H)
POS = getElementPosition(H,ELEIDX)

Description

POS = getElementPosition(H) returns the element positions of the conformal array
H. POS is an 3xN matrix where N is the number of elements in H. Each column of POS
defines the position of an element in the local coordinate system, in meters, using the
form [x; y; z].

For details regarding the local coordinate system of the conformal array, enter
phased.ConformalArray.coordinateSystemlnfo.

POS = getElementPosition(H,ELEIDX) returns the positions of the elements that
are specified in the element index vector ELE 1DX.

Examples

Construct a default conformal array and obtain the element positions.

ha = phased.ConformalArray;
pos = getElementPosition(ha)

getNumElements

getNumElements

System object: phased.ConformalArray
Package: phased

Number of elements in array

Syntax

N = getNumElements(H)

Description

N = getNumElements(H) returns the number of elements, N, in the conformal array
object H.

Examples

Construct a default conformal array and obtain the number of elements.

ha = phased.ConformalArray;
N = getNumElements(ha)

1-207

1 Alphabetical List

getNumlinputs

System object: phased.ConformalArray
Package: phased

Number of expected inputs to step method

Syntax

N = getNumlnputs(H)

Description

N = getNumlnputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) you must use when calling the step method. This value
changes when you alter properties that turn inputs on or off.

1-208

getNumOutputs

getNumOutputs

System object: phased.ConformalArray
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)
Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1-209

1 Alphabetical List

getTaper

System object: phased.ConformalArray
Package: phased

Array element tapers

Syntax

wts = getTaper(h)

Description

wts = getTaper(h) returns the tapers applied to each element of a conformal array, h.
Tapers are often referred to as weights.

Input Arguments

h — Conformal array
phased.ConformalArray System object

Conformal array specified as a phased.ConformalArray System object.

Output Arguments

wts — Array element tapers
N-by-1 complex-valued vector

Array element tapers returned as an N-by-1, complex-valued vector, where N is the
number of elements in the array.

1-210

getTaper

Examples

Create and View a Tapered Array

Create a two-ring tapered disk array

Create a two-ring disk array and set the taper values on the outer ring to be smaller than

those on the inner ring.

elemAngles = ([0:5]*360/6);

elemPoslnner = 0.5*[zeros(size(elemAngles)); ...
cosd(elemAngles);. ..
sind(elemAngles)];

elemPosOuter = [zeros(size(elemAngles));...
cosd(elemAngles);. ..
sind(elemAngles)];

elemNorms = repmat([0;0],1,12);

taper = [ones(size(elemAngles)),0.3*ones(size(elemAngles))];

ha = phased.ConformalArray(...
[elemPoslinner,elemPosOuter],elemNorms, "Taper” ,taper);

Display the taper values

w = getTaper(ha)

.0000
.0000
.0000
.0000
.0000
.0000
.3000
.3000
.3000
.3000
.3000
.3000

eNololoNoNeol i S o o

View the array

viewArray(ha, "ShowTaper*®,true, "Showlndex”,"all");

1-211

1 Alphabetical List

Array Geometry

o @ @ @

.1 1 .12

(PRI IR

S AT

axis =1.732m

[I

1-212

isLocked

isLocked

System object: phased.ConformalArray
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the ConformalArray System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

1-213

1 Alphabetical List

1-214

isPolarizationCapable

System object: phased.ConformalArray
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description
flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating

whether the array supports polarization. An array supports polarization if all of its
constituent sensor elements support polarization.

Input Arguments

h — Conformal array

Conformal array specified as a phased.ConformalArray System object.

Output Arguments
flag — Polarization-capability flag

Polarization-capability returned as a Boolean value true if the array supports
polarization or False if it does not.

isPolarizationCapable

Examples

Conformal Array of Short-dipole Antenna Elements Supports Polarization

Show that a circular conformal array of phased.ShortDipoleAntennaElement
antenna elements supports polarization.

8; azang = (0:N-1)*360/N-180;
phased.ShortDipoleAntennaElement;
= phased.ConformalArray(.- .
"Element”,h, "ElementPosition”, [cosd(azang);sind(azang);zeros(1,N)],--.
“ElementNormal ", [azang;zeros(1,N)]);

N
h
ha

isPolarizationCapable(ha)
ans =
1

The returned value true (1) shows that this array supports polarization.

1-215

1 Alphabetical List

1-216

pattern

System object: phased.ConformalArray
Package: phased

Plot conformal array pattern

Syntax

pattern(sArray,FREQ)
pattern(sArray,FREQ,AZ)
pattern(sArray,FREQ,AZ,EL)
pattern(,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern(_)

Description

pattern(sArray,FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sArray. The operating frequency is specified in FREQ.

pattern(sArray,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sArray,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the "CoordinateSystem” parameter is set to "uv”, then AZ_ANG contains the

U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

pattern

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-1674

Input Arguments

sArray — Conformal array
System object

Conformal array, specified as a phased.ConformalArray System object.

Example: sArray= phased.ConformalArray;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

+ For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as —InF. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement,
which use the FrequencyVector property.

* For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as —Inf.

Example: [1e8 2e8]

Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-

valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between —180° and 180°.

1-217

1 Alphabetical List

1-218

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.

Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where NN is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between —90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.

Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"CoordinateSystem”™ — Plotting coordinate system
"polar” (default) | "rectangular® | "uv®

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of "CoordinateSystem” and one of "polar”, "rectangular”, or
"uv”. When "CoordinateSystem” is set to "polar” or "rectangular”, the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between —180° and 180°. EL values must lie between —90° and 90°.
If "CoordinateSystem” is set to "uv™, AZ and EL specify U and U coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: "uv”

Data Types: char

pattern

"Type" — Displayed pattern type
"directivity” (default) | "efield” | "power” | "powerdb*®

Displayed pattern type, specified as the comma-separated pair consisting of "Type* and
one of
+ "directivity™ — directivity pattern measured in dBi.

+ T"efield" — field pattern of the sensor or array. For acoustic sensors, the displayed
pattern is for the scalar sound field.

* "power " — power pattern of the sensor or array defined as the square of the field
pattern.

+ "powerdb® — power pattern converted to dB.
Example: "powerdb*
Data Types: char

"Normalize" — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
"Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set "Type” to "directivity”, this parameter does not apply. Directivity
patterns are already normalized.

Example:
Data Types: logical

"PlotStyle” — Plotting style
"overlay” (default) | "waterfall*

Plotting style, specified as the comma-separated pair consisting of "Plotstyle”

and either "overlay” or "waterfall". This parameter applies when you specify
multiple frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the
arguments AZ or EL to a scalar.

Example:

Data Types: char

"Polarization” — Polarized field component
"combined” (default) | "H" | "V*©

1-219

1 Alphabetical List

1-220

Polarized field component to display, specified as the comma-separated pair consisting
of 'Polarization' and "combined®, "H", or "V". This parameter applies only when

the sensors are polarization-capable and when the "Type® parameter is not set to
"directivity”. This table shows the meaning of the display options

"Polarization” Display

"combined* Combined H and V polarization
components

"H" H polarization component

"v* V polarization component

Example: "V~
Data Types: char
"PropagationSpeed™ — Signal propagation speed

speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
"PropagationSpeed” and a positive scalar in meters per second.

Example: "PropagationSpeed” ,physconst("LightSpeed”)
Data Types: double

"Weights" — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of *"Weights' and an
N-by-1 complex-valued column vector or N-by-L complex-valued matrix. Array weights
are applied to the elements of the array to produce array steering, tapering, or both. The
dimension N is the number of elements in the array. The dimension L is the number of
frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose

N-by-1 complex-valued Scalar or 1-by-L row vector |Applies a set of weights for

column vector the single frequency or for all
L frequencies.

N-by-L complex-valued 1-by-L row vector Applies each of the L

matrix columns of "Weights*® for
the corresponding frequency
in FREQ.

pattern

Example: "Weights®,ones(N,M)

Data Types: double
Complex Number Support: Yes

Output Arguments

PAT — Array pattern
M-by-N real-valued matrix

Array pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-N
real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL_ANG.

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element

or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

Uraa (9’ (P)

D=4rn
Ptotal

1-221

1 Alphabetical List

where U,,q(0,9) is the radiant intensity of a transmitter in the direction (8,¢) and Piya
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw
2-D azimuth and elevation pattern plots. These methods are azimuthPattern and
elevationPattern.

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL, "Namel", "Valuel®, ..., "NameN", "ValueN")

plotResponse Inputs plotResponse Description pattern Inputs

H argument Antenna, microphone, or array |H argument (no change)
System object.

FREQ argument Operating frequency. FREQ argument (no change)

V argument Propagation speed. This "PropagationSpeed” name-
argument is used only for value pair. This parameter is
arrays. only used for arrays.

1-222

pattern

plotResponse Inputs

plotResponse Description

pattern Inputs

"Format” and "RespCut*”
name-value pairs

These options work together to
let you create a plot in angle
space (line or polar style) or

UV space. They also determine
whether the plot is 2-D or 3-

D. This table shows you how to
create different types of plots
using plotResponse.

Display space

Angle space Set

(2D) "RespCut”
to "Az" or
"EI". Set
"Format” to
"line" or
"polar-.

Set the display
axis using
either the

the
"AzimuthAngl
or
"ElevationAn
name-value
pairs.

"CoordinateSystem" name-
value pair used together with
the AZ and EL input arguments.

"CoordinateSystem” has
the same options as the
plotResponse method
"Format®name-value pair,
except that "line" is now
named "rectangular®. The
table shows how to create
different types of plots using
pattern.

Display space

Angle space Set

(2D) "Coordinate
System*® to
"rectangularf
or "polar-.
Specify either
AZ or EL as a
scalar.

Angle space Set

(3D) "RespCut”

to "3D". Set
"Format” to
"line” or
"polar-.

Set the display

axis using
both the

Angle space Set

(3D) "Coordinate
System*® to
"rectangular
or "polar”.
Specify both

AZ and EL as
vectors.

UV space (2D) |[Set
"Coordinate
System*® to
"uv®. Use AZ
to specify a U-
space vector.

1-223

1 Alphabetical List

plotResponse Inputs

plotResponse Description

pattern Inputs

Display space Display space
"AzimuthAngl Use EL to
and"Elevatiol specify a V-
name-value space scalar.
pairs. UV space (3D) |Set

UV space (2D) |Set "Coordinate
"RespCut” System*® to
to"U". Set "uv®. Use AZ
"Format* to specify a U-
to "UV". Set space vector.

the display
range using
the "UGrid*
name-value
pair.

Use EL to
specify a V-
space vector.

If you set CoordinateSystem

Set
"RespCut”
to"3D". Set
"Format” to
"UV". Set the
display range
using both
the "UGrid*"
and "VGrid-
name-value

UV space (3D)

to "uv”, enter the UV grid
values using AZ and EL.

pairs.

"CutAngle™ name-value pair

Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
"RespCut” is set to "Az" or
"El", use "CutAngle” to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

1-224

pattern

plotResponse Inputs

plotResponse Description

pattern Inputs

"Normal izeResponse® name-

value pair

Normalizes the plot.
When "Unit” is set to
"dbi ", you cannot specify
"Normal izeResponse”.

*Normalize" name-value
pair. When "Type”® is set to
"directivity”,

you cannot specify
"Normalize®.

"OverlayFreq" name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when "Format” is

set to "line” or "uv™ and
"RespCut” is not set to "3D".
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

"PlotStyle” name-value pair
plots multiple frequencies on the
same 2-D plot.

The values "overlay® and
"waterfall " correspond to
"OverlayFreq"® values of
true and false. The option
"waterfall" is allowed only
when "CoordinateSystem® is
set to "rectangular”® or "uv”.

"Polarization” name-value
pair

Determines how to plot
polarized fields. Options are
"None"®, "Combined®, "H", or
"V,

"Polarization” name-value
pair determines how to plot
polarized fields. The "None*
option is removed. The options
"Combined”®, "H", or "V" are
unchanged.

"Unit"® name-value pair

Determines the plot units.
Choose "db*", "mag”, "pow",
or "dbi ", where the default is
"db".

"Type" name-value pair, uses
equivalent options with different
names

plotResponse pattern

"db* "powerdb*
"mag*” “efield"
"pow* "power "

“dbi* "directivity”

"Weights" name-value pair

Array element tapers (or
weights).

"Weights" name-value pair (no
change).

1-225

1 Alphabetical List

plotResponse Inputs plotResponse Description pattern Inputs
"AzimuthAngles®™ name-value | Azimuth angles used to display |AZ argument
pair the antenna or array response.
"ElevationAngles” name- Elevation angles used to EL argument
value pair display the antenna or array
response.
"UGrid" name-value pair Contains U coordinates in UV- |AZ argument when
space. "CoordinateSystem®” name-
value pair is set to "uv*
"VGrid" name-value pair Contains V-coordinates in UV- |EL argument when
space. "CoordinateSystem® name-
value pair is set to "uv"”
Examples

Plot Power Pattern of 8-Element Uniform Circular Array

Using the ConformalArray System object, construct an 8-element uniform circular array
(UCA) of isotropic antenna elements. Plot a normalized azimuth power pattern at 0
degrees elevation. Assume the operating frequency is 1 GHz and the wave propagation
speed is the speed of light.

N = 8;

azang = (0:N-1)*360/N-180;

sCA = phased.ConformalArray(...
"ElementPosition”, [cosd(azang);sind(azang);zeros(1,N)],---
“ElementNormal ", [azang;zeros(1,N)]);

fc = 1le9;

c = physconst("LightSpeed®);

pattern(sCA, fc,[-180:180],0,.-.
"PropagationSpeed®,c, "Type~, "powerdb”, . ..
"CoordinateSystem*, "polar~)

1-226

pattern

Azimuth Cut (elevation angle = 0.0)

Mormalized Power (dB)

Mormalized Power (dB), Broadside at 0.00 degrees

Plot Pattern of 31-Element Uniform Circular Sonar Array

Construct a 31-element acoustic uniform circular sonar array (UCA) using the
ConformalArray System object. Assume the array is one meter in diameter. Using
the ElevationAngles parameter, restrict the display to +/-40 degrees in 0.1 degree
increments. Assume the operating frequency is 4 kHz. A typical value for the speed of
sound in seawater is 1500.0 m/s.

Construct the array

N = 31;

theta = (0:N-1)*360/N-180;

Radius = 0.5;

sMic = phased.OmnidirectionalMicrophoneElement(. ..

1-227

1 Alphabetical List

"FrequencyRange”,[0,10000], "BackBaffled",true);
sArray = phased.ConformalArray("Element”,sMic, ...

"ElementPosition”,Radius*[zeros(1,N);cosd(theta);sind(theta)],- - -

“ElementNormal ", [ones(1,N);zeros(1,N)]);
Plot the magnitude pattern

fc = 4000;

c = 1500.0;

pattern(sArray,fc,0,[-40:0.1:40], - ..
"PropagationSpeed”,c, ...
"CoordinateSystem”, "polar”, ...
"Type*®,"efield")

Elevation Cut (azimuth angle = 0.0)
90
.1

\ L D,

Normalized Magnitude

Mormalized Magnitude, Broadside at 0.00 degrees

1-228

pattern

Plot the directivity pattern

pattern(sArray,fc,0,[-40:0.1:40], ...
"PropagationSpeed”,c, ...
"CoordinateSystem”, "polar”,
"Type*®,"directivity")

Elevation Cut (azimuth angle = 0.0°)
00

"‘«“" i
EZJ]ED ’(’“’v". T 0

Directivity (dBi), Broadside at 0.00 degrees

See Also

phased.ConformalArray.patternAzimuth |
phased.ConformalArray.patternElevation

Introduced in R2015a

1-229

1 Alphabetical List

1-230

patternAzimuth

System object: phased.ConformalArray
Package: phased

Plot conformal array directivity or pattern versus azimuth

Syntax

patternAzimuth(sArray,FREQ)
patternAzimuth(sArray,FREQ,EL)
patternAzimuth(sArray,FREQ,EL ,Name,Value)
PAT = patternAzimuth(__)

Description

patternAzimuth(sArray,FREQ) plots the 2-D array directivity pattern versus
azimuth (in dBi) for the array sArray at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sArray,FREQ,EL), in addtion, plots the 2-D array directivity
pattern versus azimuth (in dBi) for the array sArray at the elevation angle specified by
EL. When EL is a vector, multiple overlaid plots are created.

patternAzimuth(sArray,FREQ,EL ,Name,Value) plots the array pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth() returns the array pattern. PAT is a matrix whose

entries represent the pattern at corresponding sampling points specified by the
"Azimuth® parameter and the EL input argument.

Input Arguments

sArray — Conformal array
System object

patternAzimuth

Conformal array, specified as a phased.ConformalArray System object.

Example: sArray= phased.ConformalArray;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

+ For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as —InF. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement,
which use the FrequencyVector property.

+ For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as —Inf.

Example: 1e8

Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where IV is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between —90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.

Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the

argument name and Value is the corresponding value. Name must appear inside single

1-231

1 Alphabetical List

1-232

quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"Type" — Displayed pattern type
"directivity” (default) | "efield” | "power™ | "powerdb”

Displayed pattern type, specified as the comma-separated pair consisting of "Type® and
one of
+ "directivity" — directivity pattern measured in dBi.

+ "efield" — field pattern of the sensor or array. For acoustic sensors, the displayed
pattern is for the scalar sound field.

* "power" — power pattern of the sensor or array defined as the square of the field
pattern.

* "powerdb® — power pattern converted to dB.
Example: "powerdb*®
Data Types: char

"PropagationSpeed™ — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
"PropagationSpeed” and a positive scalar in meters per second.

Example: "PropagationSpeed” ,physconst("LightSpeed”)

Data Types: double

"Weights™ — Array weights
M-by-1 complex-valued column vector

Array weights, specified as the comma-separated pair consisting of "Weights" and an
M-by-1 complex-valued column vector. Array weights are applied to the elements of the
array to produce array steering, tapering, or both. The dimension M is the number of
elements in the array.

Example: "Weights”®,ones(10,1)

Data Types: double
Complex Number Support: Yes

patternAzimuth

"Azimuth" — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of *Azimuth” and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: "Azimuth®,[-90:2:90]

Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N rea-valued matrix. The dimension
L is the number of azimuth values determined by the "Azimuth® name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element

or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

Urad (9’ (P)

D=4rn
Ptotal

where U,,q(0,9) is the radiant intensity of a transmitter in the direction (6,p) and Py
is the total power transmitted by an isotropic radiator. For a receiving element or array,

1-233

1 Alphabetical List

1-234

directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Plot Azimuth Pattern of 5-Element Cross Sonar Array

Construct a 5-element acoustic cross array (UCA) using the ConformalArray System
object. Assume the operating frequency is 4 kHz. A typical value for the speed of sound in
seawater is 1500.0 m/s. Plot the array patterns at two different elevation angles.

Construct and view array

= 5;
c = 4000;
1500.0;
= c/fc;
zeros(1,N);
[-1,0,1,0,0]*1am/2;
[0,0,0,-1,1]*1am/2;
c = phased.OmnidirectionalMicrophoneElement(. ..
"FrequencyRange”, [0,10000], "BackBaffled" ,true);
sArray = phased.ConformalArray("Element”,sMic, ...
"ElementPosition”,[X;y;z],---
“"ElementNormal ", [zeros(1,N);zeros(1,N)]);
viewArray(sArray)

N X =0 = =2
o))
3

0
=

patternAzimuth

Array Geometry

L

Plot azimuth pattern for magnitude

fc = 4000;

c = 1500.0;

patternAzimuth(sArray,fc,[0,20], ...
"PropagationSpeed”,c, ...
"Type-®,"efield")

[]

1-235

1 Alphabetical List

Azimuth Cut (frequency = 4 kHz)

95 0.0 deg elevation
120 4 60 20.0 deg elevation
CORAN
150 30
2
<
s [[T8Ee
: IS
\ E.ﬂ 3{.
60

3
&

Magnitude, Broadside at 0.00 degrees

Plot azimuth pattern for directivity
patternAzimuth(sArray,fc,[0,20], ---

"PropagationSpeed”,c, ...
"Type*®,"directivity")

1-236

patternAzimuth

Azimuth Cut (frequency = 4 kHz)

150

180

0.0 deg elevation
20.0 deg elevation

Directivity (dBi

"-L .
'Y/
-1 E-III' — -30

'f N I’
Y

-90

Directivity (dBi), Broadside at 0.00 degrees

See Also

phased.UCA_pattern | phased.UCA.patternElevation

Introduced in R2015a

1-237

1 Alphabetical List

1-238

patternElevation

System object: phased.ConformalArray
Package: phased

Plot conformal array array directivity or pattern versus elevation

Syntax

patternElevation(sArray,FREQ)
patternElevation(sArray,FREQ,AZ)
patternElevation(sArray,FREQ,AZ,Name,Value)
PAT = patternElevation(__)

Description

patternElevation(sArray,FREQ) plots the 2-D array directivity pattern versus
elevation (in dBi) for the array sArray at zero degrees azimuth angle. When AZ is a
vector, multiple overlaid plots are created. The argument FREQ specifies the operating
frequency.

patternElevation(sArray,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(sArray,FREQ,AZ,Name,Value) plots the array pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation() returns the array pattern. PAT is a matrix
whose entries represent the pattern at corresponding sampling points specified by the
"Elevation” parameter and the AZ input argument.

Input Arguments

sArray — Conformal array
System object

patternElevation

Conformal array, specified as a phased.ConformalArray System object.

Example: sArray= phased.ConformalArray;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

* For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as —InF. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement,
which use the FrequencyVector property.

* For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as —Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between —180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.

Example: [0,10,20]
Data Types: double
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1-239

1 Alphabetical List

1-240

quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"Type" — Displayed pattern type
"directivity” (default) | "efield” | "power™ | "powerdb”

Displayed pattern type, specified as the comma-separated pair consisting of "Type® and
one of
+ "directivity" — directivity pattern measured in dBi.

+ "efield" — field pattern of the sensor or array. For acoustic sensors, the displayed
pattern is for the scalar sound field.

* "power" — power pattern of the sensor or array defined as the square of the field
pattern.

* "powerdb® — power pattern converted to dB.
Example: "powerdb*®
Data Types: char

"PropagationSpeed™ — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
"PropagationSpeed” and a positive scalar in meters per second.

Example: "PropagationSpeed” ,physconst("LightSpeed”)

Data Types: double

"Weights™ — Array weights
M-by-1 complex-valued column vector

Array weights, specified as the comma-separated pair consisting of "Weights" and an
M-by-1 complex-valued column vector. Array weights are applied to the elements of the
array to produce array steering, tapering, or both. The dimension M is the number of
elements in the array.

Example: "Weights”®,ones(10,1)

Data Types: double
Complex Number Support: Yes

patternElevation

"Elevation” — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of "Elevation*®
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.

Example: "Elevation®,[-90:2:90]
Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the "Elevation” name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element

or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

Urad (97 (0)

D=4rn
Ptotal

where U,,q(0,9) is the radiant intensity of a transmitter in the direction (6,p) and Py
is the total power transmitted by an isotropic radiator. For a receiving element or array,

1-241

1 Alphabetical List

1-242

directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Plot Elevation Pattern of 5-Element Cross Sonar Array

Construct a 5-element acoustic cross array (UCA) using the ConformalArray System
object. Assume the operating frequency is 4 kHz. A typical value for the speed of sound in
seawater is 1500.0 m/s. Plot the array patterns at two different azimuth angles.

Construct and view array

= 5;
c = 4000;
1500.0;
= c/fc;
zeros(1,N);
[-1,0,1,0,0]*1am/2;
[0,0,0,-1,1]*1am/2;
c = phased.OmnidirectionalMicrophoneElement(. ..
"FrequencyRange”, [0,10000], "BackBaffled" ,true);
sArray = phased.ConformalArray("Element”,sMic, ...
"ElementPosition”,[X;y;z],---
“"ElementNormal ", [zeros(1,N);zeros(1,N)]);
viewArray(sArray)

N X =0 = =2
o))
3

0
=

patternElevation

Array Geometry

I ."-".":1'.-' Span:

[]
]

Plot magnitude elevation pattern

fc = 4000;

c = 1500.0;

patternElevation(sArray,fc,[0,90], ...
"PropagationSpeed”,c, ...
"Type-®,"efield")

1-243

1 Alphabetical List

Elevation Cut (frequency = 4 kHz)

90 5 0.0 deg azimuth
120 4 60 90.0 deg azimuth
' 3
150 ' 30
2
£180 — = o
R
-150 —31]'
-120 50
-90

Magnitude, Broadside at 0.00 degrees

Plot directivity elevation pattern

Plot the pattern for elevation angles between -60 and 6- degrees at 0.1 degree resolution.
patternElevation(sArray,fc,[0,90],--.-
"PropagationSpeed”,c, - ..

"Type*®, "directivity”, ...
"Elevation®,[-60:0.1:60])

1-244

patternElevation

Elevation Cut (frequency = 4 kHz)
90

10

0.0 deg azimuth
90.0 deg azimuth

-90
Directivity (dBi), Broadside at 0.00 degrees

See Also

phased.UCA_pattern | phased.UCA.patternAzimuth

Introduced in R2015a

1-245

1 Alphabetical List

1-246

plotResponse

System object: phased.ConformalArray
Package: phased

Plot response pattern of array

Syntax

plotResponse(H,FREQ, V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse()

Description

plotResponse(H,FREQ, V) plots the array response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ. The
propagation speed is specified in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse() returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments

H
Array object
FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row vector. Values must lie
within the range specified by a property of H. That property is named FrequencyRange
or FrequencyVector, depending on the type of element in the array. The element has
no response at frequencies outside that range. If you set the "RespCut” property of H

plotResponse

to "3D", FREQ must be a scalar. When FREQ is a row vector, plotResponse draws
multiple frequency responses on the same axes.

\

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"CutAngle-

Cut angle as a scalar. This argument is applicable only when RespCut is "Az" or "EI *. If
RespCut is "Az", CutAngle must be between —90 and 90. If RespCut is "EI1", CutAngle
must be between —180 and 180.

Default: O
"Format*”

Format of the plot, using one of "Line", "Polar”, or "UV". If you set Format to "UV",
FREQ must be a scalar.

Default: "Line*
"Normal izeResponse*

Set this value to true to normalize the response pattern. Set this value to False to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to "dbi *.

Default: true
"OverlayFreq*®

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false
to plot pattern cuts against frequency in a 3-D waterfall plot. If this value is False,
FREQ must be a vector with at least two entries.

1-247

1 Alphabetical List

This parameter applies only when Format is not "Polar® and RespCut is not "3D".
Default: true
"Polarization”

Specify the polarization options for plotting the array response pattern. The allowable
values are | "None®™ | "Combined® | "H" | "V" | where

* "None" specifies plotting a nonpolarized response pattern
+ "Combined® specifies plotting a combined polarization response pattern
* "H" specifies plotting the horizontal polarization response pattern

* "V" gpecifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed value is "None*®. This
parameter is not applicable when you set the Unit parameter value to "dbi ".

Default: "None*
"RespCut”
Cut of the response. Valid values depend on Format, as follows:

+ If Formatis "Line" or "Polar”, the valid values of RespCut are "Az", "EI ", and
"3D". The default is "Az".

+ If Formatis "UV", the valid values of RespCut are "U" and "3D". The default is "U".
If you set RespCut to "3D", FREQ must be a scalar.
"unit”

The unit of the plot. Valid values are "db™, "mag”, "pow", or "dbi ". This parameter
determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB
scale

mag field pattern

pow power pattern

dbi directivity

1-248

plotResponse

Default: "db*
"Weights*

Weight values applied to the array, specified as a length-N column vector or N-by-M
matrix. The dimension N is the number of elements in the array. The interpretation of M
depends upon whether the input argument FREQ is a scalar or row vector.

Weights Dimensions FREQ Dimension Purpose

N-by-1 column vector Scalar or 1-by-M row vector |Apply one set of weights for
the same single frequency or
all M frequencies.

Scalar Apply all of the M different
columns in Weights for the
same single frequency.

N-by-M matrix 1-by-M row vector Apply each of the M different

columns in Weights for the

corresponding frequency in
FREQ.

"AzimuthAngles~

Azimuth angles for plotting array response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles
for visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to "Az" or "3D" and the Format parameter is set to "Line" or
"Polar”. The values of azimuth angles should lie between —180° and 180° and must be
in nondecreasing order. When you set the RespCut parameter to *3D", you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]
"ElevationAngles”

Elevation angles for plotting array response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation

angles for visualizing the radiation pattern. This parameter is allowed only when the
RespCut parameter is set to "EL1" or "3D" and the Format parameter is set to "Line"
or "Polar”. The values of elevation angles should lie between —90° and 90° and must be
in nondecreasing order. When yous set the RespCut parameter to "3D", you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

1-249

1 Alphabetical List

1-250

Default: [-90:90]
"UGrid*®

U coordinate values for plotting array response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing

the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to "UV" and the RespCut parameter is set to "U" or "3D". The values of
UGrid should be between —1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]
"VGrid-

V coordinate values for plotting array response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing

the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to "UV" and the RespCut parameter is set to "3D". The values of VGrid
should be between —1 and 1 and should be specified in nondecreasing order. You can set
VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples

Plot Power Pattern of 8-Element Uniform Circular Array

Using the ConformalArray System object, construct an 8-element uniform circular array
(UCA) of isotropic antenna elements. Plot a normalized azimuth power pattern at 0
degrees elevation. Assume the operating frequency is 1 GHz and the wave propagation
speed is the speed of light.

N = 8;

azang = (0:N-1)*360/N-180;

SCA = phased.ConformalArray(. ..
"ElementPosition”, [cosd(azang);sind(azang);zeros(1,N)], - --
"ElementNormal ", [azang;zeros(1,N)]);

fc = 1e9;

¢ = physconst(“LightSpeed®);

pattern(sCA, fc,[-180:180],0,. -.
"PropagationSpeed”,c, "Type*®, "powerdb”, . ..

plotResponse

"CoordinateSystem”, "polar”)

Azimuth Cut (elevation angle = 0.0)

Mormalized Power (dB)

Mormalized Power (dB), Broadside at 0.00 degrees

Plot Pattern of 31-Element Uniform Circular Sonar Array

Construct a 31-element acoustic uniform circular sonar array (UCA) using the
ConformalArray System object. Assume the array is one meter in diameter. Using
the ElevationAngles parameter, restrict the display to +/-40 degrees in 0.1 degree
increments. Assume the operating frequency is 4 kHz. A typical value for the speed of
sound in seawater is 1500.0 m/s.

Construct the array

N = 31;
theta = (0:N-1)*360/N-180;

1-251

1 Alphabetical List

Radius = 0.5;

sMic = phased.OmnidirectionalMicrophoneElement(. ..
"FrequencyRange”, [0,10000], "BackBaffled" ,true);

sArray = phased.ConformalArray("Element”,sMic, ...

"ElementPosition”,Radius*[zeros(1,N);cosd(theta);sind(theta)], - ..

"ElementNormal ", [ones(1,N);zeros(1,N)]);

Plot the magnitude pattern

fc = 4000;

c = 1500.0;

pattern(sArray,fc,0,[-40:0.1:40], --.
"PropagationSpeed”,c, - - .
"CoordinateSystem*, "polar”®, ...
"Type-®,"efield")

Elevation Cut (azimuth angle = 0.0°)
80
.1

AL O,

-120 -60
-90

Normalized Magnitude

Mormalized Magnitude, Broadside at 0.00 degrees

1-252

plotResponse

Plot the directivity pattern

pattern(sArray,fc,0,[-40:0.1:40],
"PropagationSpeed”,c,
"CoordinateSystem®, "polar”,
"Type®, "directivity”)

Elevation Cut (azimuth angle = 0.0°)

90
120 0 60
0
150 ' -10
: ‘ 0"&
:é“lﬂﬂ ‘“ 0
s R —
-m -af.
-120 -60
-90
Directivity (dBi), Broadside at 0.00 degrees
See Also

azel2uv | uv2azel

1-253

1 Alphabetical List

release

System object: phased.ConformalArray
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1-254

step

step

System object: phased.ConformalArray
Package: phased

Output responses of array elements

Syntax

RESP = step(H,FREQ,ANG)

Description

RESP = step(H,FREQ,ANG) returns the response of the array elements, RESP, at
operating frequencies specified in FREQ and directions specified in ANG.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments
H

Array object

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values
are within the range specified by a property of H.Element. That property is named
FrequencyRange or FrequencyVector, depending on the type of element in the array.
The element has zero response at frequencies outside that range.

1-255

1 Alphabetical List

1-256

ANG

Directions in degrees. ANG is either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must lie between —180° and 180°,
inclusive. The elevation angle must lie between —90° and 90°, inclusive.

If ANG is a row vector of length M, each element specifies the azimuth angle of the
direction. In this case, the corresponding elevation angle is assumed to be 0°.

Output Arguments

RESP

Voltage responses of the phased array. The output depends on whether the array
supports polarization or not.

If the array is not capable of supporting polarization, the voltage response, RESP,

has the dimensions N-by-M-by-L. N is the number of elements in the array. The
dimension M is the number of angles specified in ANG. L is the number of frequencies
specified in FREQ. For any element, the columns of RESP contain the responses of
the array elements for the corresponding direction specified in ANG. Each of the L
pages of RESP contains the responses of the array elements for the corresponding
frequency specified in FREQ.

If the array is capable of supporting polarization, the voltage response, RESP, is a
MATLAB struct containing two fields, RESP.H and RESP .V. The field, RESP . H,
represents the array’s horizontal polarization response, while RESP .V represents the
array’s vertical polarization response. Each field has the dimensions N-by-M-by-L.

N is the number of elements in the array, and M is the number of angles specified

in ANG. L is the number of frequencies specified in FREQ. Each column of RESP
contains the responses of the array elements for the corresponding direction specified
in ANG. Each of the L pages of RESP contains the responses of the array elements for
the corresponding frequency specified in FREQ.

step

Examples

Response of 8-Element Uniform Circular Array

Using the ConformalArray System object, construct an 8-element uniform circular array
(UCA) of isotropic antenna elements. The radius of the array is one meter. Assume the
operating frequency is 1 GHz and the wave propagation speed is the speed of light.

N = 8;

azang = (0:N-1)*360/N-180;

sCA = phased.ConformalArray(...
“"ElementPosition”, [cosd(azang);sind(azang);zeros(1,N)],---
"ElementNormal * , [azang;zeros(1,N)]);

Get the element response at 35 degrees azimuth and 5 degrees elevation.

fc = 1e9;
ang = [30;5];
resp = step(sCA,fc,ang)

-
@
n

©

1

RPRRPRRPRRRR

See Also

phitheta2azel | uv2azel

1-257

1 Alphabetical List

viewArray

System object: phased.ConformalArray
Package: phased

View array geometry

Syntax
viewArray(H)

viewArray(H,Name,Value)
hPlot = viewArray()

Description
viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with additional options
specified by one or more Name,Value pair arguments.

hPlot = viewArray() returns the handle of the array elements in the figure
window. All input arguments described for the previous syntaxes also apply here.

Input Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

1-258

viewArray

"Showlndex*

Vector specifying the element indices to show in the figure. Each number in the vector
must be an integer between 1 and the number of elements. You can also specify the
string "AIl " to show indices of all elements of the array or "None" to suppress indices.

Default: "None*
"ShowNormals*

Set this value to true to show the normal directions of all elements of the array. Set this
value to False to plot the elements without showing normal directions.

Default: false
"ShowTaper*

Set this value to true to specify whether to change the element color brightness in
proportion to the element taper magnitude. When this value is set to false, all elements
are drawn with the same color.

Default: false
"Title"
String specifying the title of the plot.

Default: "Array Geometry*

Output Arguments
hPlot

Handle of array elements in figure window.

Examples

View Uniform Circular Array

Display the element positions and normal directions of all elements of an 8-element
uniform circular array.

1-259

1 Alphabetical List

Create the uniform circular array

N = 8;

azang = (0:N-1)*360/N - 180;
ha = phased.ConformalArray(...

"ElementPosition”, [cosd(azang);sind(azang);zeros(1,N)], - -.
"ElementNormal ", [azang;zeros(1,N)]);

Display the positions and normal directions of the elements

viewArray(ha, "ShowNormals*® ,true);

Array Geometry

e : o
Qy«—o G-
B o ¢ *~

f=l ==
I %

. Phased Array Gallery

1-260

../examples/phased-array-gallery.html

viewArray

See Also

phased.ArrayResponse

1-261

1 Alphabetical List

1-262

phased.ConstantGammaClutter System object

Package: phased

Constant gamma clutter simulation

Description
The ConstantGammaClutter object simulates clutter.

To compute the clutter return:

1 Define and set up your clutter simulator. See “Construction” on page 1-262.

2 Call step to simulate the clutter return for your system according to the properties
of phased.ConstantGammaClutter. The behavior of step is specific to each object
in the toolbox.

The clutter simulation that ConstantGammaClutter provides is based on these
assumptions:

* The radar system is monostatic.
* The propagation is in free space.
* The terrain is homogeneous.

* The clutter patch is stationary during the coherence time. Coherence time indicates
how frequently the software changes the set of random numbers in the clutter
simulation.

* The signal is narrowband. Thus, the spatial response can be approximated by a phase
shift. Similarly, the Doppler shift can be approximated by a phase shift.

* The radar system maintains a constant height during simulation.

* The radar system maintains a constant speed during simulation.

Construction

H = phased.ConstantGammaClutter creates a constant gamma clutter simulation
System object, H. This object simulates the clutter return of a monostatic radar system
using the constant gamma model.

phased.ConstantGammaClutter System object

H = phased.ConstantGammaClutter(Name,Value) creates a constant gamma
clutter simulation object, H, with additional options specified by one or more Name,Value
pair arguments. Name is a property name, and Value is the corresponding value.

Name must appear inside single quotes (" *). You can specify several name-value pair
arguments in any order as Namel,Valuel,..,NameN,ValueN.

Properties

Sensor
Handle of sensor

Specify the sensor as an antenna element object or as an array object whose Element
property value is an antenna element object. If the sensor is an array, it can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.
Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8
SampleRate
Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default value corresponds to 1
MHz.

1-263

1 Alphabetical List

1-264

Default: 1e6

PRF

Pulse repetition frequency

Specify the pulse repetition frequency in hertz as a positive scalar or a row vector. The
default value of this property corresponds to 10 kHz. When PRF is a vector, it represents
a staggered PRF. In this case, the output pulses use elements in the vector as their PRF's,
one after another, in a cycle.

Default: 1e4

Gamma

Terrain gamma value

Specify the y value used in the constant y clutter model, as a scalar in decibels. The y

value depends on both terrain type and the operating frequency.

Default: O

EarthModel

Earth model

Specify the earth model used in clutter simulation as one of | "Flat®™ | "Curved” |.
When you set this property to "Flat”, the earth is assumed to be a flat plane. When you
set this property to "Curved®, the earth is assumed to be a sphere.

Default: "Flat*®

PlatformHeight

Radar platform height from surface

Specify the radar platform height (in meters) measured upward from the surface as a
nonnegative scalar.

Default: 300

phased.ConstantGammaClutter System object

PlatformSpeed

Radar platform speed

Specify the radar platform’s speed as a nonnegative scalar in meters per second.
Default: 300

PlatformDirection

Direction of radar platform motion

Specify the direction of radar platform motion as a 2-by-1 vector in the form
[AzimuthAngle; ElevationAngle] in degrees. The default value of this property indicates
that the platform moves perpendicular to the radar antenna array’s broadside.

Both azimuth and elevation angle are measured in the local coordinate system of the
radar antenna or antenna array. Azimuth angle must be between —180 and 180 degrees.
Elevation angle must be between —90 and 90 degrees.

Default: [90;0]

BroadsideDepressionAngle

Depression angle of array broadside

Specify the depression angle in degrees of the broadside of the radar antenna array. This
value is a scalar. The broadside is defined as zero degrees azimuth and zero degrees
elevation. The depression angle is measured downward from horizontal.

Default: O

MaximumRange

Maximum range for clutter simulation

Specify the maximum range in meters for the clutter simulation as a positive scalar.
The maximum range must be greater than the value specified in the PlatformHeight

property.

Default: 5000

1-265

1 Alphabetical List

AzimuthCoverage
Azimuth coverage for clutter simulation

Specify the azimuth coverage in degrees as a positive scalar. The clutter simulation
covers a region having the specified azimuth span, symmetric to 0 degrees azimuth.
Typically, all clutter patches have their azimuth centers within the region, but the
PatchAzimuthWidth value can cause some patches to extend beyond the region.

Default: 60

PatchAzimuthWidth

Azimuth span of each clutter patch

Specify the azimuth span of each clutter patch in degrees as a positive scalar.
Default: 1

TransmitSignal InputPort

Add input to specify transmit signal

Set this property to true to add input to specify the transmit signal in the step syntax.
Set this property to false omit the transmit signal in the step syntax. The false
option is less computationally expensive; to use this option, you must also specify the
TransmitERP property.

Default: false
TransmitERP
Effective transmitted power

Specify the transmitted effective radiated power (ERP) of the radar system in watts as
a positive scalar. This property applies only when you set the TransmitSignallnputPort
property to False.

Default: 5000
CoherenceTime

Clutter coherence time

1-266

phased.ConstantGammaClutter System object

Specify the coherence time in seconds for the clutter simulation as a positive scalar. After
the coherence time elapses, the step method updates the random numbers it uses for
the clutter simulation at the next pulse. A value of inf means the random numbers are
never updated.

Default: inf

OutputFormat

Output signal format

Specify the format of the output signal as one of | "Pulses” | "Samples” |. When you
set the OutputFormat property to "Pulses”, the output of the step method is in the
form of multiple pulses. In this case, the number of pulses is the value of the NumPulses
property.

When you set the OutputFormat property to "Samples™, the output of the step method
1s in the form of multiple samples. In this case, the number of samples is the value of the
NumSamples property. In staggered PRF applications, you might find the "Samples*
option more convenient because the step output always has the same matrix size.
Default: "Pulses”

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as a positive integer. This
property applies only when you set the OutputFormat property to "Pulses”.

Default: 1

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method as a positive integer.
Typically, you use the number of samples in one pulse. This property applies only when

you set the OutputFormat property to *Samples*®.

Default: 100

1-267

1 Alphabetical List

SeedSource
Source of seed for random number generator

Specify how the object generates random numbers. Values of this property are:

"Auto” The default MATLAB random number generator produces
the random numbers. Use "Auto” if you are using this
object with Parallel Computing Toolbox software.

"Property* The object uses its own private random number generator
to produce random numbers. The Seed property of this
object specifies the seed of the random number generator.
Use "Property” if you want repeatable results and are
not using this object with Parallel Computing Toolbox
software.

Default: "Auto”
Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar integer between 0 and 2%—
1. This property applies when you set the SeedSource property to "Property”.

Default: O

Methods

clone

Create constant gamma clutter simulation

object with same property values
getNumlInputs

Number of expected inputs to step method
getNumOutputs

Number of outputs from step method

1-268

phased.ConstantGammaClutter System object

isLocked
Locked status for input attributes and
nontunable properties

release
Allow property value and input
characteristics changes

reset
Reset random numbers and time count for
clutter simulation

step
Simulate clutter using constant gamma
model

Examples

Clutter Simulation of System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB. The effective
transmitted power of the radar system is 5 kW.

Set up radar system

Set up the characteristics of the radar system. This system has a 4-element uniform
linear array (ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation
speed is 300,000 km/s, and the operating frequency is 300 MHz. The radar platform is
flying 1 km above the ground with a path parallel to the ground along the array axis. The
platform speed is 2000 m/s. The mainlobe has a depression angle of 30 degrees.

Nele = 4;
c = 3e8;
fc = 3e8;

lambda = c/fc;

ha = phased.ULA("NumElements® ,Nele, "ElementSpacing”, lambda/2);
fs = 1le6;

prf = 10e3;

height = 1000;

direction = [90;0];

speed = 2000;

depang = 30;

1-269

1 Alphabetical List

1-270

Create clutter simulation object

Create the clutter simulation object. The configuration assumes the earth is flat. The
maximum clutter range of interest is 5 km, and the maximum azimuth coverage is +/-60
degrees.

Rmax = 5000;

Azcov = 120;

tergamma = O;

tpower = 5000;

hclutter = phased.ConstantGammaClutter("Sensor”®,ha, ...
"PropagationSpeed”,c, "OperatingFrequency” ,fc, "PRF",prf, . ..
"SampleRate” ,fs, "Gamma” ,tergamma, "EarthModel ", "Flat", ...
"TransmitERP" ,tpower, "PlatformHeight” ,height, . ..
"PlatformSpeed” ,speed, "PlatformDirection”,direction, . ..
"BroadsideDepressionAngle” ,depang, "MaximumRange® ,Rmax, - - .
"AzimuthCoverage® ,Azcov, "SeedSource”, "Property”, . ..
"Seed” ,40547);

Simulate clutter return

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf;

Npulse = 10;
csig = zeros(Nsamp,Nele,Npulse);
for m 1:Npulse

csig(:,:,m) = step(hclutter);
end

Plot angle-Doppler response

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse("SensorArray” ,ha, ...
"OperatingFrequency”,fc, "PropagationSpeed”,c, "PRF" ,prf);

plotResponse(hresp,shiftdim(csig(20,:,:)), ...
"NormalizeDoppler®,true);

phased.ConstantGammaClutter System object

Angle-Doppler Response Pattern

o o o o 0
- (2% (4] . o

Power (dB)

Mormalized Doppler Frequency
5 & o
T

S
E=Y

o
on

80 60 40 -20 0O 20 40 60 80
Angle (degrees)

Clutter Simulation Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB. The step syntax
includes the transmit signal of the radar system as an input argument. In this case, you
do not record the effective transmitted power of the signal in a property.

Set up radar system

Set up the characteristics of the radar system. This system has a 4-element uniform
linear array (ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation
speed is 300,000 km/s, and the operating frequency is 300 MHz. The radar platform is
flying 1 km above the ground with a path parallel to the ground along the array axis. The
platform speed is 2000 m/s. The mainlobe has a depression angle of 30 degrees.

1-271

1 Alphabetical List

Nele = 4;
c = 3e8;
fc = 3e8;

lambda = c/fc;

ha = phased.ULA("NumElements® ,Nele, "ElementSpacing”, lambda/2);
fs = le6;

prf = 10e3;

height = 1000;

direction = [90;0];

speed = 2000;

depang = 30;

Create clutter simulation object

Create the clutter simulation object and configure it to take a transmit signal as an input
argument to step. The configuration assumes the earth is flat. The maximum clutter
range of interest is 5 km, and the maximum azimuth coverage is +/-60 degrees.

Rmax = 5000;

Azcov = 120;

tergamma = O;

hclutter = phased.ConstantGammaClutter("Sensor”®,ha, ...
"PropagationSpeed”,c, "OperatingFrequency” ,fc, "PRF",prf, ...
“SampleRate” ,fs, "Gamma“® ,tergamma, "EarthModel ", "Flat", ...
"TransmitSignal InputPort”,true, "PlatformHeight”,height, . ..
"PlatformSpeed” ,speed, "PlatformDirection”,direction, . ..
"BroadsideDepressionAngle” ,depang, "MaximumRange® ,Rmax, - - .
"AzimuthCoverage® ,Azcov, "SeedSource”, "Property”, ...
"Seed” ,40547);

Simulate clutter return

Simulate the clutter return for 10 pulses. At each step, pass the transmit signal as an
input argument. The software automatically computes the effective transmitted power
of the signal. The transmit signal is a rectangular waveform with a pulse width of 2
microseconds.

tpower = 5000;

pw = 2e-6;

X = tpower*ones(floor(pw*fs),1);
Nsamp = Fs/prf;

Npulse = 10;

csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

1-272

phased.ConstantGammaClutter System object

csig(:,:,m) = step(hclutter,X);
end

Plot angle-Doppler response

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse("SensorArray” ,ha, ...
"OperatingFrequency”,fc, "PropagationSpeed”,c, "PRF*",prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),--.
“NormalizeDoppler” ,true);

Angle-Doppler Response Pattern

Mormalized Doppler Frequency

S o O o o o o o

(&1 (% = = - (%]) £ o
Power [dB}

o
E=%

o
tn

-80 60 40 -20 20 40 60 80
Angle [dagraas}

. Ground Clutter Mitigation with Moving Target Indication (MTI) Radar
. “Example: DPCA Pulse Canceller for Clutter Rejection”

1-273

../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html

1 Alphabetical List

1-274

Extended Capabilities

Parallel Computing

You can use this System object to perform Monte Carlo simulations with Parallel
Computing Toolbox constructs, such as parfor. In this situation, set the SeedSource
property to "Auto” to ensure correct, automatic handling of random number streams on
the workers.

Do not use this System object in a parallel construct whose iterations represent data
from consecutive pulses. Because such iterations are not independent of each other, they
must run sequentially. For more information about parallel computing constructs, see
“Deciding When to Use parfor” or “parfor Programming Considerations”.

To perform computations on a GPU instead of a CPU, use
phased.gpu.ConstantGammaClutter instead of phased.ConstantGammaClutter.

References

[1] Barton, David. “Land Clutter Models for Radar Design and Analysis,” Proceedings of
the IEEE. Vol. 73, Number 2, February, 1985, pp. 198-204.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed. Boston: Artech House,
2001.

[3] Nathanson, Fred E., J. Patrick Reilly, and Marvin N. Cohen. Radar Design Principles,
2nd Ed. Mendham, NJ: SciTech Publishing, 1999.

[4] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,”
Technical Report 1015, MIT Lincoln Laboratory, December, 1994.

See Also

phased.BarrageJammer | phased.gpu.ConstantGammaClutter | phitheta2azel
| surfacegamma | uv2azel

More About
. “Clutter Modeling”

clone

clone

System object: phased.ConstantGammaClutter
Package: phased

Create constant gamma clutter simulation object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1-275

1 Alphabetical List

getNumlinputs

System object: phased.ConstantGammaClutter
Package: phased

Number of expected inputs to step method

Syntax

N = getNumlnputs(H)

Description

N = getNumlnputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) you must use when calling the step method. This value
changes when you alter properties that turn inputs on or off.

1-276

getNumOutputs

getNumOutputs

System object: phased.ConstantGammaClutter
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)
Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1-277

1 Alphabetical List

1-278

isLocked

System object: phased.ConstantGammaClutter
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the ConstantGammaClutter
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

release

release

System object: phased.ConstantGammaClutter
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1-279

1 Alphabetical List

reset

System object: phased.ConstantGammaClutter
Package: phased

Reset random numbers and time count for clutter simulation

Syntax

reset(H)

Description

reset(H) resets the states of the ConstantGammaClutter object, H. This method
resets the random number generator state if the SeedSource property is set to
"Property"”. This method resets the elapsed coherence time. Also, if the PRF property is
a vector, the next call to step uses the first PRF value in the vector.

1-280

step

step

System object: phased.ConstantGammaClutter
Package: phased

Simulate clutter using constant gamma model

Syntax

Y = step(H)

Y = step(H,X)

Y = step(H,STEERANGLE)

Y = step(H,X,STEERANGLE)
Description

Y = step(H) computes the collected clutter return at each sensor. This syntax is
available when you set the TransmitSignallnputPort property to false.

Y = step(H,X) specifies the transmit signal in X. Transmit signal refers to the output
of the transmitter while it is on during a given pulse. This syntax is available when you
set the TransmitSignallnputPort property to true.

Y = step(H,STEERANGLE) uses STEERANGLE as the subarray steering angle. This
syntax is available when you configure H so that H.Sensor is an array that contains
subarrays and H.Sensor .SubarraySteering is either "Phase” or "Time".

Y = step(H,X,STEERANGLE) combines all input arguments. This syntax is available
when you configure H so that H. TransmitSignal InputPort is true, H.Sensor is an
array that contains subarrays, and H. Sensor . SubarraySteering is either "Phase” or
"Time".

Input Arguments

H

Constant gamma clutter object.

1-281

1 Alphabetical List

1-282

X
Transmit signal, specified as a column vector.
STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a length-2 column vector or a
scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth; elevation]. The azimuth

angle must be between —180 and 180 degrees, and the elevation angle must be between —
90 and 90 degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In this case, the elevation
angle is assumed to be 0.

Output Arguments
Y

Collected clutter return at each sensor. Y has dimensions N-by-M matrix. M is the
number of subarrays in the radar system if H. Sensor contains subarrays, or the number
of sensors, otherwise. When you set the OutputFormat property to "Samples”, N is
specified in the NumSamples property. When you set the OutputFormat property to
"Pulses”®, N is the total number of samples in the next L pulses. In this case, L is
specified in the NumPulses property.

Tips

The clutter simulation that ConstantGammaClutter provides is based on these
assumptions:

* The radar system is monostatic.

* The propagation is in free space.

* The terrain is homogeneous.

* The clutter patch is stationary during the coherence time. Coherence time indicates
how frequently the software changes the set of random numbers in the clutter
simulation.

step

* The signal is narrowband. Thus, the spatial response can be approximated by a phase
shift. Similarly, the Doppler shift can be approximated by a phase shift.

* The radar system maintains a constant height during simulation.

* The radar system maintains a constant speed during simulation.

Examples

Clutter Simulation of System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB. The effective
transmitted power of the radar system is 5 kw.

Set up the characteristics of the radar system. This system has a 4-element uniform
linear array (ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation
speed is 300,000 km/s, and the operating frequency is 300 MHz. The radar platform is
flying 1 km above the ground with a path parallel to the ground along the array axis. The
platform speed is 2000 m/s. The mainlobe has a depression angle of 30 degrees.

Nele = 4;
c = 3e8; fc = 3e8; lambda = c/fc;
ha = phased.ULA("NumElements”,Nele, "ElementSpacing”, lambda/2);

fs = 1e6; prf = 10e3;
height = 1000; direction = [90; 0];
speed = 2000; depang = 30;

Create the clutter simulation object. The configuration assumes the earth is flat. The
maximum clutter range of interest is 5 km, and the maximum azimuth coverage is +/— 60
degrees.

Rmax = 5000; Azcov = 120;

tergamma = 0; tpower = 5000;

hclutter = phased.ConstantGammaClutter("Sensor”®,ha, ...
"PropagationSpeed”,c, "OperatingFrequency” ,fc, "PRF",prf, . ..
“SampleRate” ,fs, "Gamma” ,tergamma, "EarthModel ", "Flat", ...
"TransmitERP" ,tpower, "PlatformHeight” ,height, . ..
"PlatformSpeed” ,speed, "PlatformDirection”,direction, . ..
"BroadsideDepressionAngle” ,depang, "MaximumRange® ,Rmax, - - .
"AzimuthCoverage® ,Azcov, "SeedSource”, "Property”, . ..
"Seed” ,40547);

1-283

1 Alphabetical List

1-284

Simulate the clutter return for 10 pulses.

Nsamp = Fs/prf; Npulse = 10;

csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse("SensorArray” ,ha, - ..
"OperatingFrequency”,fc, "PropagationSpeed” ,c, "PRF" ,prf);

plotResponse(hresp,shiftdim(csig(20,:,:)),---
"NormalizeDoppler®,true);

step

F =

B Figure1 RN B =5

File Edit View Inset Tools Desktop Window Help N

A IR A EID Y=

Angle-Doppler Response Pattern
s =S :

e =

o

1
"

'

1

1
-

'

Power (dB)

Mormalized Doppler Frequency
=

-0.5

Angle (degrees)

Clutter Simulation Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB. The step syntax
includes the transmit signal of the radar system as an input argument. In this case, you
do not record the effective transmitted power of the signal in a property.

Set up the characteristics of the radar system. This system has a 4-element uniform
linear array (ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation
speed is 300,000 km/s, and the operating frequency is 300 MHz. The radar platform is
flying 1 km above the ground with a path parallel to the ground along the array axis. The
platform speed is 2000 m/s. The mainlobe has a depression angle of 30 degrees.

Nele = 4;

1-285

1 Alphabetical List

1-286

c = 3e8; fc = 3e8; lambda = c/fc;
ha = phased.ULA("NumElements® ,Nele, "ElementSpacing”, lambda/2);

fs = 1e6; prf = 10e3;
height = 1000; direction = [90; 0];
speed = 2000; depang = 30;

Create the clutter simulation object and configure it to take a transmit signal as an input
argument to step. The configuration assumes the earth is flat. The maximum clutter
range of interest is 5 km, and the maximum azimuth coverage is +/— 60 degrees.

Rmax = 5000; Azcov = 120;

tergamma = O;

hclutter = phased.ConstantGammaClutter("Sensor”,ha, ...
"PropagationSpeed”,c, "OperatingFrequency”,fc, "PRF" ,prf, ...
"SampleRate”,fs, "Gamma” , tergamma, "EarthModel ", "Flat”™, ...
"TransmitSignal InputPort”,true, "PlatformHeight”,height, . ..
"PlatformSpeed”,speed, "PlatformDirection”,direction, ...
"BroadsideDepressionAngle” ,depang, "MaximumRange® ,Rmax, - . .
"AzimuthCoverage® ,Azcov, "SeedSource”, "Property”-, ...
"Seed” ,40547);

Simulate the clutter return for 10 pulses. At each step, pass the transmit signal as an
input argument. The software automatically computes the effective transmitted power of
the signal. The transmit signal is a rectangular waveform with a pulse width of 2 ps.

tpower = 5000;

pw = 2e-6;

X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf; Npulse = 10;

csig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

csig(:,:,m) = step(hclutter,X);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

hresp = phased.AngleDopplerResponse("SensorArray”,ha, ...
"OperatingFrequency”,fc, "PropagationSpeed” ,c, "PRF" ,prf);

plotResponse(hresp,shiftdim(csig(20,:,:)), ...
"NormalizeDoppler”,true);

step

Bl g E=S o =
File Edit View Inset Tools Desktop Window Help "
DEde | M ARANVBEL- 2 |([0E | =D

Angle-Doppler Response Pattern

0.5

Mormalized Doppler Frequency

-50

Angle (degrees)

Ground Clutter Mitigation with Moving Target Indication (MTI) Radar
“Example: DPCA Pulse Canceller for Clutter Rejection”

More About
“Clutter Modeling”

1-287

../examples/ground-clutter-mitigation-with-moving-target-indication-mti-radar.html

1 Alphabetical List

1-288

phased.CosineAntennaElement System object

Package: phased

Cosine antenna element

Description

The CosineAntennaElement object models an antenna with a cosine response in both
azimuth and elevation.

To compute the response of the antenna element for specified directions:

Define and set up your cosine antenna element. See “Construction” on page 1-288.

2 Call step to compute the antenna response according to the properties of
phased.CosineAntennaElement. The behavior of step is specific to each object in
the toolbox.

This antenna element is not capable of supporting polarization.

Construction

H = phased.CosineAntennaElement creates a cosine antenna system object, H, that
models an antenna element whose response is cosine raised to a specified power greater
than or equal to one in both the azimuth and elevation directions.

H = phased.CosineAntennakElement(Name,Value) creates a cosine antenna object,

H, with each specified property set to the specified value. You can specify additional
name-value pair arguments in any order as (Namel,Valuel,...,NameN,ValueN).

Properties

FrequencyRange

Operating frequency range

phased.CosineAntennaElement System object

Specify the operating frequency range (in Hz) of the antenna element as a 1-by-2 row
vector in the form [LowerBound HigherBound]. The antenna element has no response
outside the specified frequency range.

Default: [0 1e20]
CosinePower
Exponent of cosine pattern

Specify the exponent of cosine pattern as a scalar or a 1-by-2 vector. All specified values
must be real numbers greater than or equal to 1. When you set CosinePower to a scalar,
both the azimuth direction cosine pattern and the elevation direction cosine pattern are
raised to the specified value. When you set CosinePower to a 1-by-2 vector, the first
element is the exponent for the azimuth direction cosine pattern and the second element
is the exponent for the elevation direction cosine pattern.

Default: [1.5 1.5]

Methods

clone

Create cosine antenna object with same

property values
directivity

Directivity of cosine antenna element
getNumInputs

Number of expected inputs to step method
getNumOutputs

Number of outputs from step method
isLocked

Locked status for input attributes and
nontunable properties
isPolarizationCapable
Polarization capability
pattern

Plot cosine antenna element directivity and
patterns

1-289

1 Alphabetical List

patternAzimuth
Plot cosine antenna element directivity or
pattern versus azimuth
patternElevation
Plot cosine antenna element directivity or
pattern versus elevation
plotResponse
Plot response pattern of antenna
release
Allow property value and input
characteristics changes
step
Output response of antenna element
Definitions

Cosine Response

The cosine response, or cosine pattern, is given by:

P(az,el) = cos™ (az)cos” (el)

In this expression:

* azis the azimuth angle.
* el is the elevation angle.

* The exponents m and n are real numbers greater than or equal to 1.

The response is defined for azimuth and elevation angles between —90 and 90 degrees,
inclusive. There is no response at the back of a cosine antenna. The cosine response
pattern achieves a maximum value of 1 at 0 degrees azimuth and elevation. Raising the
response pattern to powers greater than one concentrates the response in azimuth or
elevation.

1-290

phased.CosineAntennaElement System object

Examples

Calculate Response of Cosine Antenna

Construct a cosine pattern antenna and calculate its response at boresight (0 degrees
azimuth and O degrees elevation). Then, plot the antenna pattern. Assume the antenna
works between 800 MHz and 1.2 GHz and its operating frequency is 1 GHz.

sCos = phased.CosineAntennaElement(...
"FrequencyRange” ,[800e6 1.2e9]);
fc = 1e9;
resp = step(sCos,fc,[0; 0]);
pattern(sCos,fc,0,[-90:90], - --
"Type*®, "powerdb”, . ..
"CoordinateSystem®, "polar”)

1-291

1 Alphabetical List

1-292

Elevation Cut (azimuth angle = 0.0°)
20

E "("’l/

Mormalized Power (dB), Broadside at 0.00 degrees

See Also

phased.UCA | phased.ConformalArray |
phased.CrossedDipoleAntennaElement | phased.CustomAntennaElement |
phased. IsotropicAntennaElement | phased.ShortDipoleAntennaElement |
phased.ULA | phased.URA

clone

clone

System object: phased.CosineAntennaElement
Package: phased

Create cosine antenna object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1-293

1 Alphabetical List

1-294

directivity

System object: phased.CosineAntennaElement
Package: phased

Directivity of cosine antenna element

Syntax

D = directivity(H,FREQ,ANGLE)

Description

D = directivity(H,FREQ,ANGLE) returns the “Directivity (dBi)” on page 1-296 of
a cosine antenna element, H, at frequencies specified by FREQ and in direction angles
specified by ANGLE.

Input Arguments

H — Cosine antenna element

System object

Cosine antenna element specified as a phased.CosineAntennaElement System object.
Example: H = phased.CosineAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

* For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is

directivity

returned as —Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement,
which use the FrequencyVector property.

+ For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as —InF.

Example: [1e8 2e8]
Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between —180° and 180°.
The elevation angle must lie between —90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.

Example: [45 60; O 10]
Data Types: double

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the

M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

1-295

1 Alphabetical List

1-296

Definitions

Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element

or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

Urad (6> (P)

D=4rn
P total

where U,,q(0,9) is the radiant intensity of a transmitter in the direction (6,¢) and Pia
1s the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of Cosine Antenna Element

Compute the directivity of a cosine antenna element for a set of seven azimuth directions
centered around boresight (zero degrees azimuth and zero degrees elevation). All
elevation angles are set to zero degrees.

directivity

Create a cosine antenna element system object with the CosinePower exponents set to
1.8.

myAnt = phased.CosineAntennaElement("CosinePower®,[1.8,1.8]);

Set the directivity angles so that the elevation angles are zero. Set the frequency to 1
GHz.

ang = [-30,-20,-10,0,10,20,30; 0,0,0,0,0,0,0];
freq = 1le9;

Compute the directivity

d = directivity(myAnt,freq,ang)

-3890
.6654
-3985
-6379
-3985
.6654
-3890

~N 00 © © O 0~

The maximum directivity is at boresight.

See Also

phased.CosineAntennaElement.pattern

1-297

1 Alphabetical List

getNumlinputs

System object: phased.CosineAntennaElement
Package: phased

Number of expected inputs to step method

Syntax

N = getNumlnputs(H)

Description

N = getNumlnputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) you must use when calling the step method. This value
changes when you alter properties that turn inputs on or off.

1-298

getNumOutputs

getNumOutputs

System object: phased.CosineAntennaElement
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)
Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1-299

1 Alphabetical List

1-300

isLocked

System object: phased.CosineAntennaElement
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the CosineAntennaElement
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

isPolarizationCapable

isPolarizationCapable

System object: phased.CosineAntennaElement
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description
flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating
whether the phased.CosineAntennaElement System object supports polarization. An

antenna element supports polarization if it can create or respond to polarized fields. This
object does not support polarization.

Input Arguments

h — Cosine antenna element

Cosine antenna element specified as a phased.CosineAntennaElement System object.

Output Arguments

flag — Polarization-capability flag

Polarization-capability flag returned as a Boolean value true if the

antenna element supports polarization or false if it does not. Because the
phased.CosineAntennaElement object does not support polarization, flag is always
returned as false.

1-301

1 Alphabetical List

1-302

Examples

Cosine Antenna Does Not Support Polarization

Create a cosine antenna element using the phased.CosineAntennaElement antenna
element and show that it does not support polarization.

h = phased.CosineAntennaElement("FrequencyRange®,[1.0,10]*1e9);
isPolarizationCapable(h)

ans =
0

The returned value false (0) shows that the antenna element does not support
polarization.

pattern

pattern

System object: phased.CosineAntennaElement
Package: phased

Plot cosine antenna element directivity and patterns

Syntax

pattern(sElem, FREQ)
pattern(sElem,FREQ,AZ)
pattern(sElem,FREQ,AZ,EL)

pattern(,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern(_)

Description

pattern(skElem, FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sElem. The operating frequency is specified in FREQ.

pattern(sElem,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sElem,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the "CoordinateSystem” parameter is set to "uv”, then AZ_ANG contains the

U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

1-303

1 Alphabetical List

1-304

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-1674

Input Arguments

sElem — Cosine antenna element
System object

Cosine antenna element, specified as a phased.CosineAntennaElement System object.

Example: sElem = phased.CosineAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

+ For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as —InF. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement,
which use the FrequencyVector property.

* For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as —Inf.

Example: [1e8 2e8]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-
valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between —180° and 180°.

pattern

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.

Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where NN is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between —90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.

Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"CoordinateSystem”™ — Plotting coordinate system
"polar” (default) | "rectangular® | "uv®

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of "CoordinateSystem” and one of "polar”, "rectangular”, or
"uv”. When "CoordinateSystem” is set to "polar” or "rectangular”, the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between —180° and 180°. EL values must lie between —90° and 90°.
If "CoordinateSystem” is set to "uv™, AZ and EL specify U and U coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: "uv”

Data Types: char

1-305

1 Alphabetical List

1-306

"Type" — Displayed pattern type
"directivity” (default) | "efield” | "power

powerdb*®

Displayed pattern type, specified as the comma-separated pair consisting of "Type" and
one of
* "directivity™ — directivity pattern measured in dBi.

+ "efield™ — field pattern of the sensor or array. For acoustic sensors, the displayed
pattern is for the scalar sound field.

+ "power" — power pattern of the sensor or array defined as the square of the field
pattern.

+ "powerdb® — power pattern converted to dB.
Example: "powerdb*®
Data Types: char

"Normalize" — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
"Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set "Type” to "directivity”, this parameter does not apply. Directivity
patterns are already normalized.

Example:
Data Types: logical

"PlotStyle" — Plotting style
"overlay” (default) | "waterfall*

Plotting style, specified as the comma-separated pair consisting of "Plotstyle”

and either "overlay” or "waterfall". This parameter applies when you specify
multiple frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the
arguments AZ or EL to a scalar.

Example:

Data Types: char

pattern

Output Arguments

PAT — Element pattern
M-by-N real-valued matrix

Element pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-IV
real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL._ANG.

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element

or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

Urad (97 90)

D=4rn
Ptotal

where U,,q(8,9) is the radiant intensity of a transmitter in the direction (8,¢) and Piya
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.

1-307

1 Alphabetical List

When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw
2-D azimuth and elevation pattern plots. These methods are azimuthPattern and

elevationPattern.

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL, "Namel~”, "Valuel®, ..., "NameN~, "ValueN®)

plotResponse Inputs

plotResponse Description

pattern Inputs

H argument

Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument

Operating frequency.

FREQ argument (no change)

V argument

Propagation speed. This
argument is used only for
arrays.

"PropagationSpeed” name-
value pair. This parameter is
only used for arrays.

"Format” and "RespCut
name-value pairs

1-308

These options work together to
let you create a plot in angle
space (line or polar style) or
UV space. They also determine
whether the plot is 2-D or 3-
D. This table shows you how to

"CoordinateSystem®” name-
value pair used together with
the AZ and EL input arguments.

"CoordinateSystem” has
the same options as the

pattern

plotResponse Inputs

plotResponse Description pattern Inputs
create different types of plots plotResponse method
using plotResponse. "Format"name-value pair,
except that "1ine” is now
Display space named "rectangular”. The
Angle space Set ta}ble shows how to create.
(D) "RespCut” different types of plots using
to "Az" or |Ppattern.
"El". Set .
"Format" to ||| Pisplay space
"line” or Angle space Set
"polar-. (2D) "Coordinate
System*® to
Set the display "rectangular
axis using or " po lar".
either the Specify either
the AZ or EL as a
"AzimuthAngl scalar.
?]I;IevationAnc Angle space ?et i
name-value (3D) Coord : nate
i, System*® to
"rectangular
Angle space Set or "polar-.
(3D) "RespCut” Specify both
to "3D". Set AZ and EL as
"Format” to vectors.
o line 'or UV space (2D) |Set
polar-. - ;
Coordinate
Set the display System” to
axis using "uv®. Use AZ
both the to specify a U-
*AzimuthAngl space vector.
and"Elevatioy Use EL to
name-value specify a V-
pairs. space scalar.
UV space (2D) |Set UV space (3D) |Set
"RespCut” "Coordinate
System*® to

1-309

1 Alphabetical List

plotResponse Inputs

plotResponse Description

pattern Inputs

the display
range using
the "UGrid*
name-value
pair.

Set
"RespCut”
to"3D". Set
"Format” to
"UV*®. Set the
display range
using both
the "UGrid*®
and "VGrid"
name-value
pairs.

UV space (3D)

Display space Display space
to"U*®. Set "uv®. Use AZ
"Format*” to specify a U-
to "UV". Set space vector.

Use EL to
specify a V-
space vector.

If you set CoordinateSystem
to "uv®, enter the UV grid
values using AZ and EL.

"CutAngle® name-value pair

Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
"RespCut” is set to "Az" or
"EIl", use "CutAngle” to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

"Normal izeResponse” name-
value pair

Normalizes the plot.
When “"Unit” is set to
"dbi ", you cannot specify
"Normal izeResponse”.

"Normalize®™ name-value
pair. When "Type” is set to
"directivity”,

you cannot specify
*Normalize®.

1-310

pattern

plotResponse Inputs

plotResponse Description

pattern Inputs

"OverlayFreq" name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when "Format”® is

set to "line” or "uv™ and
"RespCut” is not set to "3D".
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

"PlotStyle” name-value pair
plots multiple frequencies on the
same 2-D plot.

The values "overlay® and
"waterfall " correspond to
"OverlayFreq"® values of
true and false. The option
"waterfall” is allowed only
when "CoordinateSystem® is
set to "rectangular”® or "uv”.

"Polarization” name-value
pair

Determines how to plot
polarized fields. Options are
"None"®, "Combined®, "H", or
"vE.

"Polarization” name-value
pair determines how to plot
polarized fields. The "None*
option is removed. The options
"Combined”®, "H", or "V" are
unchanged.

"Unit" name-value pair

Determines the plot units.
Choose "db*", "mag”, "pow",
or "dbi ", where the default is
"db".

"Type" name-value pair, uses
equivalent options with different
names

plotResponse pattern

“db* “powerdb*
"mag " "efield"”
"pow* "power "

"dbi* "directivity”

"Weights" name-value pair

Array element tapers (or
weights).

"Weights" name-value pair (no
change).

"AzimuthAngles”™ name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

"ElevationAngles®™ name-
value pair

Elevation angles used to
display the antenna or array
response.

EL argument

1-311

1 Alphabetical List

plotResponse Inputs

plotResponse Description

pattern Inputs

"UGrid" name-value pair

Contains U coordinates in UV-
space.

AZ argument when
"CoordinateSystem® name-
value pair is set to "uv”

"VGrid" name-value pair

Contains V-coordinates in UV-
space.

EL argument when
"CoordinateSystem” name-
value pair is set to "uv"”

Examples

Plot 3-D Polar Pattern of Cosine Antenna

Construct a cosine antenna element using default parameters. Then, plot the 3-D
polar power pattern. Assume the antenna operating frequency is 1 GHz. Then, plot the
antenna's response in 3-D polar format.

sCos = phased.CosineAntennaElement;

fc = 1e9;

pattern(sCos,fc,[-180:180],[-90:90], - - -
"Type*, "powerdb”, ...
"CoordinateSystem”, "polar™)

1-312

pattern

3D Response Pattern 0

EIOD

Mormalized Power (dB)

Plot Azimuth-Cut of Cosine Antenna Response

Construct a cosine antenna element using default parameters. Then, plot the pattern

of field magnitude. Assume the antenna operating frequency is 1 GHz. Restrict the
response to the range of azimuth angles from -30 to 30 degrees in 0.1 degree increments.
The default elevation angle is O degrees.

sCos = phased.CosineAntennaElement;

fc = 1e9;
pattern(sCos,fc,[-30:0.1:30],0, - -.
"Type®, "efield”, ...

"CoordinateSystem”, "polar™)

1-313

1 Alphabetical List

1-314

Azimuth Cut (elevation angle = 0.0)

%0y

% v,

-120

Normalized Magnitude
S
o

-90
Mormalized Magnitude, Broadside at 0.00 degrees

Directivity of Cosine Antenna

Construct a cosine-pattern antenna. Assume the antenna works between 1 and 2 GHz
and its operating frequency is 1.5 GHz. Set the azimuth angle cosine power to 2.5 and the
elevation angle cosine power to 3.5. Then, plot an elevation cut of its directivity.

sCos = phased.CosineAntennaElement("FrequencyRange”,
[1e9 2e9], "CosinePower”,[2.5,3.5]);

fc = 1.5e9;

pattern(sCos,fc,0,[-90:90],
"Type*®, "directivity", ...
"CoordinateSystem”, "rectangular®)

pattern

Elevation Cut (azimuth angle = 0.0°)

20F 7 '

1

el

=
T

L
]
T

-100 80 -60 -40 -20 0 20 40 60 80 100
Elevation Angle (degrees)

The directivity is maximum at O degrees elevation and attains a value of approximately
12 dB.

See Also

phased.CosineAntennakElement.patternAzimuth |
phased.CosineAntennaElement.patternElevation

Introduced in R2015a

1-315

1 Alphabetical List

1-316

patternAzimuth

System object: phased.CosineAntennaElement
Package: phased

Plot cosine antenna element directivity or pattern versus azimuth

Syntax

patternAzimuth(sElem, FREQ)
patternAzimuth(sElem,FREQ,EL)
patternAzimuth(skElem,FREQ,EL ,Name,Value)
PAT = patternAzimuth(__)

Description

patternAzimuth(sElem, FREQ) plots the 2-D element directivity pattern versus
azimuth (in dBi) for the element sElem at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sElem,FREQ,EL), in addition, plots the 2-D element directivity
pattern versus azimuth (in dBi) at the elevation angle specified by EL. When EL is a
vector, multiple overlaid plots are created.

patternAzimuth(skElem,FREQ,EL,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth() returns the element pattern. PAT is a matrix
whose entries represent the pattern at corresponding sampling points specified by the
"Azimuth" parameter and the EL input argument.

Input Arguments

sElem — Cosine antenna element
System object

Cosine antenna element, specified as a phased.CosineAntennaElement System object.

Example: sElem = phased.CosineAntennaElement;

patternAzimuth

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

* For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as —InF. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement,
which use the FrequencyVector property.

+ For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as —Inf.

Example: 1e8
Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where IV is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between —90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.

Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"Type" — Displayed pattern type
"directivity” (default) | "efield” | "power

powerdb*®

1-317

1 Alphabetical List

1-318

Displayed pattern type, specified as the comma-separated pair consisting of "Type® and
one of

* "directivity™ — directivity pattern measured in dBi.

+ T"efield" — field pattern of the sensor or array. For acoustic sensors, the displayed
pattern is for the scalar sound field.

+ "power® — power pattern of the sensor or array defined as the square of the field
pattern.

+ "powerdb® — power pattern converted to dB.
Example: "powerdb*®
Data Types: char

"Azimuth" — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of "Azimuth” and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.

Example: "Azimuth®,[-90:2:90]
Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of azimuth values determined by the "Azimuth® name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element
or array of sensor elements. Higher directivity is desired when you want to transmit

patternAzimuth

more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

Urad (95 (P)
Ptotal

D=4rn

where U,,q(0,9) is the radiant intensity of a transmitter in the direction (6,p) and Py
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Reduced Azimuth Pattern of Cosine Antenna Element

Plot an azimuth cut of directivity of a cosine antenna element at 0 and 10 degrees
elevation. Assume the operating frequency is 500 MHz.

Create the Antenna Element

fc = 500e6;

sCos = phased.CosineAntennaElement("FrequencyRange”,[100,900]*1e6, - ..
"CosinePower”,[3,2]);

patternAzimuth(sCos,fc,[0 30])

1-319

1 Alphabetical List

Azimuth Cut (frequency = 500 MHz)
90

0.0 deg elevation

_10
= 30.0 deg elevation

Directivity (dBi)

Directivity (dBi), Broadside at 0.00 degrees

Plot a reduced range of azimuth angles using the Azimuth parameter. Notice the change
in scale.

patternAzimuth(sCos,fc,[0 30], "Azimuth*®,[-20:20]1)

1-320

patternAzimuth

Azimuth Cut (frequency = 500 MHz)

80

0.0 deg elevation
120 10 G0 30.0 deg elevation
9
150 30
s [O
Jui]
2 A\ ~
= e\
=180 < — 0
F I I -
E —
E
-1 50

-120 -60
-30

Directivity (dBi), Broadside at 0.00 degrees

See Also

phased.CosineAntennaElement._pattern |
phased.CosineAntennakElement.patternElevation

Introduced in R2015a

1-321

1 Alphabetical List

1-322

patternElevation

System object: phased.CosineAntennaElement
Package: phased

Plot cosine antenna element directivity or pattern versus elevation

Syntax

patternElevation(sElem, FREQ)
patternElevation(sElem,FREQ,AZ)
patternElevation(skElem,FREQ,AZ,Name,Value)
PAT = patternElevation(__)

Description

patternElevation(skElem,FREQ) plots the 2-D element directivity pattern versus
elevation (in dBi) for the element sElem at zero degrees azimuth angle. The argument
FREQ specifies the operating frequency.

patternElevation(skElem,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(skElem,FREQ,AZ,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation() returns the element pattern. PAT is a matrix

whose entries represent the pattern at corresponding sampling points specified by the
"Elevation” parameter and the AZ input argument.

Input Arguments

sElem — Cosine antenna element
System object

patternElevation

Cosine antenna element, specified as a phased.CosineAntennaElement System object.

Example: sElem = phased.CosineAntennaElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

* For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as —InF. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement,
which use the FrequencyVector property.

* For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as —Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between —180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.

Example: [0,10,20]
Data Types: double
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1-323

1 Alphabetical List

1-324

quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"Type" — Displayed pattern type
"directivity” (default) | "efield” | "power

powerdb*®

Displayed pattern type, specified as the comma-separated pair consisting of "Type" and
one of
+ "directivity" — directivity pattern measured in dBi.

+ "efield” — field pattern of the sensor or array. For acoustic sensors, the displayed
pattern is for the scalar sound field.

+ "power® — power pattern of the sensor or array defined as the square of the field
pattern.

* "powerdb® — power pattern converted to dB.
Example: "powerdb*®
Data Types: char

"Elevation” — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of "Elevation*®
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.

Example: "Elevation”,[-90:2:90]
Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the "Elevation” name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

patternElevation

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element

or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

Urad (95 (P)
Ptotal

D=4rn

where U,,q(0,9) is the radiant intensity of a transmitter in the direction (6,p) and Py
1s the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Reduced Elevation Pattern of Cosine Antenna Element

Plot an elevation cut of directivity of a cosine antenna element at 45 and 55 degrees
azimuth. Assume the operating frequency is 500 MHz.

1-325

1 Alphabetical List

Create the Antenna Element

fc = 500e6;

sCos = phased.CosineAntennaElement("FrequencyRange®,[100,900]*1e6, . - .
"CosinePower”,[3,2]);

patternElevation(sCos, fc,[45 55])

Elevation Cut (frequency = 500 MHz)

0 45.0 deg azimuth
55.0 deg azimuth

180 "j

Directivity (dBi)

Directivity (dBi), Broadside at 0.00 degrees

Plot a reduced range of azimuth angles using the Azimuth parameter. Notice the change
in scale.

patterntElevation(sCos, fc,[45 55], "Elevation®,[-20:20])

1-326

patternElevation

Elevation Cut {frequency = 500 MHz)

80

45.0 deg azimuth
55.0 deg azimuth

-

Directivity (dBi)

-90

Directivity (dBi), Broadside at 0.00 degrees

See Also

phased.CosineAntennaElement._pattern |
phased.CosineAntennaElement.patternAzimuth

Introduced in R2015a

1-327

1 Alphabetical List

1-328

plotResponse

System object: phased.CosineAntennaElement
Package: phased

Plot response pattern of antenna

Syntax

plotResponse(H, FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse()

Description

plotResponse(H, FREQ) plots the element response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse() returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments

H
Element System object
FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row vector. FREQ must

lie within the range specified by the FrequencyVector property of H. If you set the
"RespCut” property of H to "3D", FREQ must be a scalar. When FREQ is a row vector,
plotResponse draws multiple frequency responses on the same axes.

plotResponse

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"CutAngle”

Cut angle specified as a scalar. This argument is applicable only when RespCut is "Az*
or "EN". If RespCut is "Az", CutAngle must be between —90 and 90. If RespCut is "EI ",
CutAngle must be between —180 and 180.

Default: O
"Format*”

Format of the plot, using one of "Line", "Polar”, or "UV". If you set Format to "UV",
FREQ must be a scalar.

Default: "Line"
"Normal izeResponse*

Set this value to true to normalize the response pattern. Set this value to False to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to "dbi *.

Default: true
"OverlayFreq*®

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false
to plot pattern cuts against frequency in a 3-D waterfall plot. If this value is False,
FREQ must be a vector with at least two entries.

This parameter applies only when Format is not "Polar® and RespCut is not "3D".
Default: true
"Polarization”

Specify the polarization options for plotting the antenna response pattern. The allowable
values are | "None® | "Combined”™ | "H" | "V" | where

1-329

1 Alphabetical List

* "None" specifies plotting a nonpolarized response pattern
+ "Combined*® specifies plotting a combined polarization response pattern
* "H" specifies plotting the horizontal polarization response pattern

* "V" gpecifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed value is "None". This
parameter is not applicable when you set the Unit parameter value to "dbi ".

Default: "None*
"RespCut”
Cut of the response. Valid values depend on Format, as follows:

+ If Formatis "Line" or "Polar”, the valid values of RespCut are "Az", "EI ", and
"3D". The default is "Az".

+ If Formatis "UV", the valid values of RespCut are "U" and "3D". The default is "U".
If you set RespCut to "3D", FREQ must be a scalar.
"Unit"

The unit of the plot. Valid values are "db™, "mag”, "pow", or "dbi ". This parameter
determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB
scale

mag field pattern

pow power pattern

dbi directivity

Default: "db*
"AzimuthAngles*

Azimuth angles for plotting element response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles

1-330

plotResponse

for visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to "Az" or "3D" and the Format parameter is set to "Line" or
"Polar”. The values of azimuth angles should lie between —180° and 180° and must be
in nondecreasing order. When you set the RespCut parameter to *3D", you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]
"ElevationAngles~

Elevation angles for plotting element response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation

angles for visualizing the radiation pattern. This parameter is allowed only when the
RespCut parameter is set to "EI" or "3D" and the Format parameter is set to "Line*
or "Polar”. The values of elevation angles should lie between —90° and 90° and must be
in nondecreasing order. When you set the RespCut parameter to "3D", you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]
"UGrid-

U coordinate values for plotting element response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing

the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to "UV" and the RespCut parameter is set to "U" or "3D". The values of
UGrid should be between —1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]
"VGrid*®

V coordinate values for plotting element response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing

the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to "UV" and the RespCut parameter is set to "3D". The values of VGrid
should be between —1 and 1 and should be specified in nondecreasing order. You can set
the VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

1-331

1 Alphabetical List

Examples

Plot 3-D Polar Response of Cosine Antenna

This example shows how to plot the 3-D polar response of a cosine antenna element.
Construct a cosine antenna element using default parameters. Assume the antenna
operating frequency is 1 GHz. Then, plot the antenna's response in 3-D polar format.

hcos = phased.CosineAntennaElement;
plotResponse(hcos,1e9, "Format®, "Polar”, "RespCut”,"3D");

1-332

plotResponse

3D Response Pattern

-20

-25

-30
EIOD

Mormalized Power (dB)

-35

40
45

-50

Plot Azimuth-Cut of Cosine Antenna Response

This example shows how to plot an azimuth-cut of the cosine antenna response.
Construct a cosine antenna element using default parameters. Assume the antenna
operating frequency is 1 GHz. Restrict the response to the range of azimuth angles from
-30 to 30 degrees in 0.1 degree increments. The default elevation angle is 0 degrees.

hcos = phased.CosineAntennaElement;

plotResponse(hcos, 1e9, "Format”, "Polar®, "RespCut”, "Az", ...
"AzimuthAngles”,[-30:0.1:30], "Unit","mag”);

1-333

1 Alphabetical List

1-334

Azimuth Cut (elevation angle = 0.0)

%0y

% v,

-120

Normalized Magnitude
S
o

-90
Mormalized Magnitude, Broadside at 0.00 degrees

Plot Directivity of Cosine Antenna

This example shows how to construct a cosine-pattern antenna and plot an elevation
cut of its directivity. Assume the antenna works between 1 and 2 GHz and its operating
frequency is 1.5 GHz. Set the azimuth angle cosine power to 2.5 and the elevation angle
cosine power to 3.5.

sCos = phased.CosineAntennaElement("FrequencyRange”,
[1e9 2e9], "CosinePower”,[2.5,3.5]);
plotResponse(sCos,1.5e9, "RespCut”, "EIl", "Unit","dbi");

plotResponse

Elevation Cut (azimuth angle = 0.0°)
ZD - T T T T T T T

ty (d

Directiv
L
[
T

-100 80 -60 -40 -20 0 20 40 60 80 100
Elevation Angle (degrees)

The directivity is maximum at O degrees elevation and attains a value of approximately
12 dB.

See Also

azel2uv | uv2azel

1-335

1 Alphabetical List

1-336

release

System object: phased.CosineAntennaElement
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

step

step

System object: phased.CosineAntennaElement
Package: phased

Output response of antenna element

Syntax

RESP = step(H,FREQ,ANG)

Description

RESP = step(H,FREQ,ANG) returns the antenna’s voltage response RESP at operating
frequencies specified in FREQ and directions specified in ANG.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Antenna element object.

FREQ

Operating frequencies of antenna in hertz. FREQ is a row vector of length L.
ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

1-337

1 Alphabetical List

1-338

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must be between —180 and 180 degrees,
inclusive. The elevation angle must be between —90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

Output Arguments

RESP

Voltage response of antenna element specified as an M-by-L, complex-valued matrix. In
this matrix, M represents the number of angles specified in ANG while L represents the
number of frequencies specified in FREQ.

Definitions

Cosine Response

The cosine response, or cosine pattern, is given by:

P(az,el) = cos™ (az)cos" (el)

In this expression:

* azis the azimuth angle.
* el is the elevation angle.

* The exponents m and n are real numbers greater than or equal to 1.

The response is defined for azimuth and elevation angles between —90 and 90 degrees,
inclusive. There is no response at the back of a cosine antenna. The cosine response
pattern achieves a maximum value of 1 at 0 degrees azimuth and elevation. Raising the
response pattern to powers greater than one concentrates the response in azimuth or
elevation.

step

Examples

Construct a cosine antenna element. The cosine response is raised to a power of 1.5. The

antenna frequency range is the IEEE® X band from 8 to 12 GHz. The antenna operates at
10 GHz. Obtain the antenna's response for an incident angle of 30 degrees azimuth and 5
degrees elevation.

hant = phased.CosineAntennaElement(. ..
"FrequencyRange”,[8e9 12e9],...
"CosinePower®,1.5);

% operating frequency

fc = 10e9;

% @ncident angle

ang = [30;5];

% use the step method to obtain the antenna®s response

resp = step(hant,fc,ang);

See Also

phitheta2azel | uv2azel

1-339

1 Alphabetical List

1-340

phased.CrossedDipoleAntennaElement System object

Package: phased

Crossed-dipole antenna element

Description

The phased.CrossedDipoleAntennaElement System object models a crossed-

dipole antenna element. A crossed-dipole antenna is often used for generating circularly
polarized fields. A crossed-dipole antenna is formed from two orthogonal short-dipole
antennas, one along y-axis and the other along the z-axis in the antenna's local
coordinate system. This antenna object generates right-handed circularly polarized fields
along the x-axis (defined by 0° azimuth and 0° elevation angles).

To compute the response of the antenna element for specified directions:

1 Define and set up your crossed-dipole antenna element. See “Construction” on page
1-340.

2 Call step to compute the antenna response according to the properties of
phased.CrossedDipoleAntennaElement. The behavior of step is specific to each
object in the toolbox.

Construction

h = phased.CrossedDipoleAntennaElement creates the system object, h, to model a
crossed-dipole antenna element.

h = phased.CrossedDipoleAntennaElement(Name,Value) creates
the system object, h, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Namel,Valuel,...,NameN,ValueN).

Properties

FrequencyRange

Antenna operating frequency range

phased.CrossedDipoleAntennaElement System object

Antenna operating frequency range specified as a 1-by-2 row vector in the form of
[LowerBound HigherBound]. This defines the frequency range over which the antenna
has a response. The antenna element has no response outside the specified frequency

range.

Default: [0 1e20]

Methods

clone
directivity

getNumlInputs
getNumOutputs

isLocked

isPolarizationCapable

pattern
patternAzimuth
patternElevation

plotResponse

Create crossed-dipole antenna object with
same property values

Directivity of crossed-dipole antenna
element

Number of expected inputs to step method
Number of outputs from step method

Locked status for input attributes and
nontunable properties

Polarization capability

Plot crossed-dipole antenna element
directivity and patterns

Plot crossed-dipole antenna element
directivity or pattern versus azimuth

Plot crossed-dipole antenna element
directivity or pattern versus elevation

Plot response pattern of antenna

1-341

1 Alphabetical List

1-342

release
Allow property value and input
characteristics changes
step
Output response of antenna element
Examples

Plot Response of a Crossed-Dipole Antenna

Examine the response patterns of a crossed-dipole antenna used in an L-band radar with
a frequency range between 1-2 GHz.

First, set up the radar parameters, and obtain the vertical and horizontal polarization
responses at five different directions: elevation angles -30, -15, 0, 15 and 30 degrees, all
at 0 degrees azimuth angle. The responses are computed at an operating frequency of 1.5
GHz.

sCD = phased.CrossedDipoleAntennaElement(. ..
"FrequencyRange”,[1,2]*1e9);

fc = 1.5e9;

resp = step(sCD,fc,[0,0,0,0,0;-30,-15,0,15,30]);

[resp.V, resp.H]

ans =
-1.0607 + 0.0000i 0.0000 - 1.2247i
-1.1830 + 0.0000i 0.0000 - 1.2247i
-1.2247 + 0.0000i 0.0000 - 1.2247i
-1.1830 + 0.0000i 0.0000 - 1.2247i
-1.0607 + 0.0000i 0.0000 - 1.2247i

Next, draw a 3-D plot of the combined polarization response.

pattern(sCD, fc,[-180:180],[-90:90], - - -
"CoordinateSystem”, "polar”, ...
"Type*®, "powerdb”, . ..
"Polarization®, "combined®)

phased.CrossedDipoleAntennaElement System object

0
3D Response Pattern
1-0.5
z
- _-I %
o
-15
D
N
X |
E
Az D 5 B
ElD <
-2.5
-3

Algorithms

The total response of a crossed-dipole antenna element is a combination of its frequency
response and spatial response. phased.CrossedDipoleAntennaElement calculates

both responses using nearest neighbor interpolation, and then multiplies the responses to
form the total response.

References

[1] Mott, H., Antennas for Radar and Communications, John Wiley & Sons, 1992.

1-343

1 Alphabetical List

See Also

phased.UCA | phased.ConformalArray | phased.CosineAntennaElement
| phased.CustomAntennaElement | phased. IsotropicAntennaElement

| phased.ShortDipoleAntennaElement | phased.ULA | phased.URA |
phitheta2azel | phitheta2azelpat | uv2azel | uv2azelpat

1-344

clone

clone

System object: phased.CrossedDipoleAntennaElement
Package: phased

Create crossed-dipole antenna object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1-345

1 Alphabetical List

1-346

directivity
System object: phased.CrossedDipoleAntennaElement

Package: phased

Directivity of crossed-dipole antenna element

Syntax

D = directivity(H,FREQ,ANGLE)

Description

D = directivity(H,FREQ,ANGLE) returns the “Directivity” on page 1-348 of a
crossed-dipole antenna element, H, at frequencies specified by FREQ and in direction
angles specified by ANGLE.

Input Arguments

H — Crossed-dipole antenna element
System object

Crossed-dipole antenna element specified as a
phased.CrossedDipoleAntennaElement System object.

Example: H = phased.CrossedDipoleAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

* For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is

directivity

returned as —Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement,
which use the FrequencyVector property.

+ For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as —InF.

Example: [1e8 2e8]
Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between —180° and 180°.
The elevation angle must lie between —90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.

Example: [45 60; O 10]
Data Types: double

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the

M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

1-347

1 Alphabetical List

1-348

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element

or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

Urad (95 (P)
Ptotal

D=4rn

where U,,q(0,9) is the radiant intensity of a transmitter in the direction (6,p) and Py
1s the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of Crossed-Dipole Antenna Element

Compute the directivity of a crossed-dipole antenna element in several different
directions.

directivity

Create a crossed-dipole antenna element system object.

myAnt = phased.CrossedDipoleAntennaElement;

Set the angles of interest to be at zero-degrees constant elevation angle. The seven
azimuth angles are centered around boresight (zero degrees azimuth and zero degrees
elevation). Set the desired frequency to 1 GHz.

ang = [-30,-20,-10,0,10,20,30; 0,0,0,0,0,0,0];
freq = 1le9;

Compute the directivity along the constant elevation cut.

d = directivity(myAnt,freq,ang)

.1811
.4992
.6950
.7610
.6950
.4992
.1811

RPRRPRRRRR

See Also

phased.CrossedDipoleAntennaElement.pattern

1-349

1 Alphabetical List

getNumlinputs

System object: phased.CrossedDipoleAntennaElement
Package: phased

Number of expected inputs to step method

Syntax

N = getNumlnputs(H)

Description

N = getNumlnputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) you must use when calling the step method. This value
changes when you alter properties that turn inputs on or off.

1-350

getNumOutputs

getNumOutputs

System object: phased.CrossedDipoleAntennaElement
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)
Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1-351

1 Alphabetical List

1-352

isLocked

System object: phased.CrossedDipoleAntennaElement
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the
phased.CrossedDipoleAntennaElement System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

isPolarizationCapable

isPolarizationCapable

System object: phased.CrossedDipoleAntennaElement
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description

flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating
whether the phased.CrossedDipoleAntennaElement System object supports
polarization. An antenna element supports polarization if it can create or respond to
polarized fields. This object supports only polarized fields.

Input Arguments

h — Crossed-dipole antenna element
phased.CrossedDipoleAntennaElementSystem object

Crossed-dipole antenna element specified as a
phased.CrossedDipoleAntennaElementSystem object.

Output Arguments
flag — Polarization-capability flag

Polarization-capability returned as a Boolean value true if the antenna

element supports polarization or false if it does not. Because the
phased.CrossedDipoleAntennaElement antenna element supports polarization, the
returned value is always true.

1-353

1 Alphabetical List

Examples

Crossed-Dipole Antenna Element Supports Polarization

Determine whether the phased.CrossedDipoleAntennaElement antenna element
supports polarization.

h = phased.CrossedDipoleAntennaElement;
isPolarizationCapable(h)

ans =
1

The returned value true (1) shows that the crossed-dipole antenna element supports
polarization.

1-354

pattern

pattern

System object: phased.CrossedDipoleAntennaElement
Package: phased

Plot crossed-dipole antenna element directivity and patterns

Syntax

pattern(sElem, FREQ)
pattern(sElem,FREQ,AZ)
pattern(sElem,FREQ,AZ,EL)

pattern(,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern(_)

Description

pattern(skElem, FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sElem. The operating frequency is specified in FREQ.

pattern(sElem,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sElem,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the "CoordinateSystem” parameter is set to "uv”, then AZ_ANG contains the

U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

1-355

1 Alphabetical List

1-356

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-1674

Input Arguments

sElem — Crossed-dipole antenna element
System object

Crossed-dipole antenna element, specified as a
phased.CrossedDipoleAntennaElement System object.

Example: sElem = phased.CrossedDipoleAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

+ For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as —InF. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement,
which use the FrequencyVector property.

* For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as —Inf.

Example: [1e8 2e8]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-
valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between —180° and 180°.

pattern

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.

Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where NN is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between —90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.

Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"CoordinateSystem”™ — Plotting coordinate system
"polar” (default) | "rectangular® | "uv®

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of "CoordinateSystem” and one of "polar”, "rectangular”, or
"uv”. When "CoordinateSystem” is set to "polar” or "rectangular”, the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between —180° and 180°. EL values must lie between —90° and 90°.
If "CoordinateSystem” is set to "uv™, AZ and EL specify U and U coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: "uv”

Data Types: char

1-357

1 Alphabetical List

1-358

"Type" — Displayed pattern type
"directivity” (default) | "efield” | "power” | "powerdb*®

Displayed pattern type, specified as the comma-separated pair consisting of "Type* and
one of
+ "directivity™ — directivity pattern measured in dBi.

+ T"efield" — field pattern of the sensor or array. For acoustic sensors, the displayed
pattern is for the scalar sound field.

* "power " — power pattern of the sensor or array defined as the square of the field
pattern.

+ "powerdb® — power pattern converted to dB.
Example: "powerdb*
Data Types: char

"Normalize" — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
"Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set "Type” to "directivity”, this parameter does not apply. Directivity
patterns are already normalized.

Example:
Data Types: logical

"PlotStyle” — Plotting style
"overlay” (default) | "waterfall*

Plotting style, specified as the comma-separated pair consisting of "Plotstyle”

and either "overlay” or "waterfall". This parameter applies when you specify
multiple frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the
arguments AZ or EL to a scalar.

Example:

Data Types: char

"Polarization” — Polarized field component
"combined” (default) | "H" | "V*©

pattern

Polarized field component to display, specified as the comma-separated pair consisting
of 'Polarization' and "combined®, "H", or "V". This parameter applies only when

the sensors are polarization-capable and when the "Type® parameter is not set to
"directivity”. This table shows the meaning of the display options

"Polarization” Display

"combined*® Combined H and V polarization
components

"H" H polarization component

VT V polarization component

Example: "V*©
Data Types: char

Output Arguments

PAT — Element pattern
M-by-N real-valued matrix

Element pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-N

real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL_ANG.

1-359

1 Alphabetical List

1-360

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element

or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

Urad (9> (P)

D=4rn
P, total

where U,,q(0,9) is the radiant intensity of a transmitter in the direction (6,p) and Py,
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw
2-D azimuth and elevation pattern plots. These methods are azimuthPattern and
elevationPattern.

pattern

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL, "Namel*, "Valuel®, ..., "NameN", "ValueN")

plotResponse Inputs

plotResponse Description

pattern Inputs

H argument

Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument

Operating frequency.

FREQ argument (no change)

V argument

Propagation speed. This
argument is used only for
arrays.

"PropagationSpeed” name-
value pair. This parameter is
only used for arrays.

"Format” and "RespCut*”
name-value pairs

These options work together to
let you create a plot in angle
space (line or polar style) or

UV space. They also determine
whether the plot is 2-D or 3-
D. This table shows you how to
create different types of plots
using plotResponse.

Display space

Angle space Set

(2D) "RespCut”
to "Az" or
"EI". Set
"Format” to
"line” or
"polar-.

Set the display
axis using
either the

the
"AzimuthAngl
or

"CoordinateSystem" name-
value pair used together with
the AZ and EL input arguments.

"CoordinateSystem” has
the same options as the
plotResponse method
*Format®name-value pair,
except that "line” is now
named "rectangular”. The
table shows how to create
different types of plots using
pattern.

Display space

Angle space Set

(2D) "Coordinate
System*® to
"rectangularf
or "polar”.
Specify either
AZ or EL as a
scalar.

"ElevationAn

Angle space Set

(3D) "Coordinate

1-361

1 Alphabetical List

plotResponse Inputs

plotResponse Description

pattern Inputs

1-362

Display space

Display space

name-value
pairs.

Angle space
(3D)

Set
"RespCut*
to "3D". Set
"Format” to
"line” or
"polar-.

Set the display
axis using

both the
"AzimuthAngl
and"Elevatio
name-value
pairs.

System” to
"rectangular
or "polar”®.
Specify both

AZ and EL as
vectors.

UV space (2D)

Set
"Coordinate
System*® to
"uv". Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space scalar.

UV space (3D)

UV space (2D)

Set
"RespCut”
to"U". Set
"Format*”
to "UV*. Set
the display
range using
the "UGrid*®
name-value
pair.

Set
"Coordinate
System*® to
"uv®. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space vector.

UV space (3D)

Set
"RespCut”
to"3D". Set
"Format” to
"UV*®. Set the
display range
using both
the "UGrid*

and "VGrid*

If you set CoordinateSystem
to "uv", enter the UV grid
values using AZ and EL.

pattern

plotResponse Inputs

plotResponse Description

pattern Inputs

Display space

name-value
pairs.

"CutAngle® name-value pair

Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
"RespCut” is set to "Az" or
"EIl", use "CutAngle” to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

"Normal izeResponse” name-

value pair

Normalizes the plot.
When “"Unit” is set to
"dbi ", you cannot specify
"Normal izeResponse”.

"Normal ize®™ name-value
pair. When "Type”® is set to
"directivity”,

you cannot specify
*Normalize®.

"OverlayFreq" name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when "Format”® is

set to "line” or "uv”® and
"RespCut” is not set to "3D".
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

"PlotStyle® name-value pair
plots multiple frequencies on the
same 2-D plot.

The values "overlay® and
"waterfall” correspond to
"OverlayFreq" values of
true and false. The option
"waterfall” is allowed only
when "CoordinateSystem” is
set to "rectangular” or “"uv".

"Polarization” name-value
pair

Determines how to plot
polarized fields. Options are
"None"®, "Combined®, "H", or
VA

"Polarization” name-value
pair determines how to plot
polarized fields. The "None*
option is removed. The options
"Combined”, "H", or "V~ are
unchanged.

1-363

1 Alphabetical List

plotResponse Inputs

plotResponse Description

pattern Inputs

"Unit"® name-value pair

Determines the plot units.
Choose "db*", "mag”, "pow",
or "dbi ", where the default is
“db-".

"Type" name-value pair, uses
equivalent options with different
names

plotResponse pattern

“db* "powerdb*
"mag*” "efield"
"pow* "power "

“dbi " "directivity”

"Weights" name-value pair

Array element tapers (or
weights).

"Weights" name-value pair (no
change).

"AzimuthAngles”™ name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

"ElevationAngles®™ name-
value pair

Elevation angles used to
display the antenna or array
response.

EL argument

"UGrid" name-value pair

Contains U coordinates in UV-
space.

AZ argument when
"CoordinateSystem" name-
value pair is set to "uv"

"VGrid® name-value pair

Contains V-coordinates in UV-
space.

EL argument when
"CoordinateSystem® name-
value pair is set to "uv”

Examples

Plot 3-D Polar Patterns of Crossed-Dipole Antenna

Construct a crossed-dipole antenna element that operates in the frequency range
from 100 MHz to 1.5 GHz. Then, plot the 3-D polar power pattern for the horizontal
polarization component. Assume the antenna operating operates at 1 GHz.

sCD = phased.CrossedDipoleAntennaElement("FrequencyRange”,[100 1500]*1e6);

fc = 1e9;

pattern(sCD, fc,[-180:180],[-90:90], - - -

1-364

pattern

"Type*®, "powerdb”, . ..
"CoordinateSystem®, "polar”®, ...
"Polarization®,"H")

3D Response Pattern

Next, plot the vertical polarization component.

pattern(sCD, fc,[-180:180],[-90:90], - - -
“"Type*®, "powerdb”, . ..
"CoordinateSystem®, "polar®, ...
“"Polarization®,"V*")

Mormalized Power (dB)

1-365

1 Alphabetical List

3D Response Pattern

Mormalized Power (dB)

Azimuth-Cut of Crossed-Dipole Antenna Pattern

Construct a crossed-dipole antenna element. Then, plot the pattern of the horizontal
component of the field magnitude. Assume the antenna operating frequency is 1 GHz.
Restrict the response to the range of azimuth angles from -70 to 70 degrees in 0.1 degree
increments. Set the elevation angle to 0 degrees.

sCD = phased.CrossedDipoleAntennaElement("FrequencyRange”,[0.5 1.5]*1e9);

fc = 1e9;
pattern(sCD,fc,[-70:0.1:70],0, - -
"Type®, "efield”, ...

"CoordinateSystem®, "polar”, ...
"Polarization”, "combined®)

1-366

pattern

Azimuth Cut (elevation angle = 0.0)

%0y

Q' ’0, /

Normalized Magnitude
=
;

-30

-120
-90

Mormalized Magnitude, Broadside at 0.00 degrees

Directivity of Crossed-Dipole Antenna

Create a crossed-dipole antenna. Assume the antenna works between 1 and 2 GHz and
its operating frequency is 1.5 GHz. Then, plot an elevation cut of its directivity.

sCD = phased.CrossedDipoleAntennaElement("FrequencyRange”,[1e9 2e9]);
fc = 1.5e9;
pattern(sCD,fc,0,[-90:90], - ..

"Type*®, "directivity”, ...

"CoordinateSystem”, "rectangular®)

1-367

1 Alphabetical List

Elevation Cut (azimuth angle = 0.0°)
2F T T T T T T T T T]

.-—-._H\
151 \
.__,r"' x_‘.l-

1t / \ .
/ \

Directivity (dBi)
=
o

A

-100 80 -60 -40 -20 0 20 40 60 80 100
Elevation Angle (degrees)

The directivity is maximum at O degrees elevation and attains a value of approximately
1.75 dB.

See Also

phased.CrossedDipoleAntennaElement.patternAzimuth
phased.CrossedDipoleAntennaElement._patternElevation

Introduced in R2015a

1-368

patternAzimuth

patternAzimuth

System object: phased.CrossedDipoleAntennaElement
Package: phased

Plot crossed-dipole antenna element directivity or pattern versus azimuth

Syntax

patternAzimuth(sElem, FREQ)
patternAzimuth(sElem, FREQ,EL)
patternAzimuth(sElem,FREQ,EL ,Name,Value)
PAT = patternAzimuth(__)

Description

patternAzimuth(sElem, FREQ) plots the 2-D element directivity pattern versus
azimuth (in dBi) for the element sElem at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sElem,FREQ,EL), in addition, plots the 2-D element directivity
pattern versus azimuth (in dBi) at the elevation angle specified by EL. When EL is a
vector, multiple overlaid plots are created.

patternAzimuth(sElem,FREQ,EL,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth() returns the element pattern. PAT is a matrix

whose entries represent the pattern at corresponding sampling points specified by the
"Azimuth® parameter and the EL input argument.

Input Arguments

sElem — Crossed-dipole antenna element
System object

1-369

1 Alphabetical List

Crossed-dipole antenna element, specified as a
phased.CrossedDipoleAntennaElement System object.

Example: sElem = phased.CrossedDipoleAntennaElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

* For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as —InF. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement,
which use the FrequencyVector property.

* For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as —Inf.

Example: 1e8

Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where N is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between —90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.

Example: [0,10,20]
Data Types: double
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1-370

patternAzimuth

quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"Type" — Displayed pattern type
"directivity” (default) | "efield” | "power

powerdb*®

Displayed pattern type, specified as the comma-separated pair consisting of "Type" and
one of
+ "directivity™ — directivity pattern measured in dBi.

+ "efield"™ — field pattern of the sensor or array. For acoustic sensors, the displayed
pattern is for the scalar sound field.

+ "power " — power pattern of the sensor or array defined as the square of the field
pattern.

* "powerdb® — power pattern converted to dB.
Example: "powerdb*®
Data Types: char

"Azimuth" — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of "Azimuth® and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: "Azimuth®,[-90:2:90]

Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of azimuth values determined by the "Azimuth® name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

1-371

1 Alphabetical List

1-372

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element

or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

Urad (95 (P)
Ptotal

D=4rn

where U,,q(0,9) is the radiant intensity of a transmitter in the direction (6,p) and Py
1s the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Reduced Azimuth Pattern of Crossed-Dipole Antenna Element

Plot an azimuth cut of the directivity of a crossed-dipole antenna element at 0 and 30
degrees elevation. Assume the operating frequency is 500 MHz.

patternAzimuth

Directivity (dBi)

Create the antenna element.

fc = 500e6;

sCD = phased.CrossedDipoleAntennaElement("FrequencyRange”,[100,900]*1e6);
patternAzimuth(sCD, fc, [0 30])

Azimuth Cut (frequency = 500 MHz)
90

0.0 deg elevation
120 60 30.0 deg elevation
1
150 0 30
s P <
S| A :
f ‘} ‘{’ ‘-.II
B0 l A : 0
A & |
. e o % P
-150 -30
-120 60
-80

Directivity (dBi), Broadside at 0.00 degrees

Plot a reduced range of azimuth angles using the Azimuth parameter. Notice the change
in scale.

patternAzimuth(sCD, fc,[0 30], "Azimuth®,[-20:20])

1-373

1 Alphabetical List

Azimuth Cut (frequency = 500 MHz)

80

0.0 deg elevation
30.0 deg elevation

1.6

-,

o

180 A

NUB

ctivity (dBi)

Ire

-120

D

-90
Directivity (dBi), Broadside at 0.00 degrees

See Also

phased.CrossedDipoleAntennaElement._pattern |
phased.CrossedDipoleAntennaElement.patternElevation

Introduced in R2015a

1-374

patternElevation

patternElevation

System object: phased.CrossedDipoleAntennaElement
Package: phased

Plot crossed-dipole antenna element directivity or pattern versus elevation

Syntax

patternElevation(sElem, FREQ)
patternElevation(sElem,FREQ,AZ)
patternElevation(skElem,FREQ,AZ,Name,Value)
PAT = patternElevation(__)

Description

patternElevation(sElem,FREQ) plots the 2-D element directivity pattern versus
elevation (in dBi) for the element sElem at zero degrees azimuth angle. The argument
FREQ specifies the operating frequency.

patternElevation(skElem,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(skElem,FREQ,AZ,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation() returns the element pattern. PAT is a matrix
whose entries represent the pattern at corresponding sampling points specified by the
"Elevation” parameter and the AZ input argument.

Input Arguments

sElem — Crossed-dipole antenna element
System object

Crossed-dipole antenna element, specified as a
phased.CrossedDipoleAntennaElement System object.

1-375

1 Alphabetical List

Example: sElem = phased.CrossedDipoleAntennaElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

* For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as —Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement,
which use the FrequencyVector property.

+ For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as —Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between —180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.

Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1-376

patternElevation

quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"Type" — Displayed pattern type
"directivity” (default) | "efield” | "power

powerdb*®

Displayed pattern type, specified as the comma-separated pair consisting of "Type" and
one of
+ "directivity" — directivity pattern measured in dBi.

+ "efield” — field pattern of the sensor or array. For acoustic sensors, the displayed
pattern is for the scalar sound field.

+ "power® — power pattern of the sensor or array defined as the square of the field
pattern.

* "powerdb® — power pattern converted to dB.
Example: "powerdb*®
Data Types: char

"Elevation” — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of "Elevation*®
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.

Example: "Elevation”,[-90:2:90]
Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the "Elevation” name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

1-377

1 Alphabetical List

1-378

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element

or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

Urad (95 (P)
Ptotal

D=4rn

where U,,q(0,9) is the radiant intensity of a transmitter in the direction (6,p) and Py
1s the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Reduced Elevation Pattern of Crossed-Dipole Antenna Element

Plot an elevation cut of directivity of a crossed dipole antenna element at 45 and 55
degrees azimuth. Assume the operating frequency is 500 MHz.

patternElevation

Directivity (dBi)

Create the antenna element

fc = 500e6;

sCD = phased.CrossedDipoleAntennaElement("FrequencyRange”,[100,900]*1e6);
patternElevation(sCD,fc,[45 55])

Elevation Cut (frequency = 500 MHz)

N ps 45.0 deg azimuth
60 55.0 deg azimuth
0
150 30
180 N\ 0
iy,
-150 -30

-120 =60
-90

Directivity (dBi), Broadside at 0.00 degrees

Plot a reduced range of elevation angles using the Elevation parameter. Notice the
change in scale.

patternElevation(sCD, fc,[45 55], "Elevation®,[-20:20])

1-379

1 Alphabetical List

Elevation Cut {frequency = 500 MHz)

20 45.0 deg azimuth
120 04 60 55.0 deg azimuth
150 ,‘ 0.2 30
d Q)
=, -,
%‘ 180 \ 0
i T\)
= -

-120 -60
-90

Directivity (dBi), Broadside at 0.00 degrees

See Also

phased.CrossedDipoleAntennaElement._pattern |
phased.CrossedDipoleAntennaElement.patternAzimuth

Introduced in R2015a

1-380

plotResponse

plotResponse

System object: phased.CrossedDipoleAntennaElement
Package: phased

Plot response pattern of antenna

Syntax

plotResponse(H, FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse()

Description

plotResponse(H, FREQ) plots the element response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse() returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments

H
Element System object
FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row vector. FREQ must

lie within the range specified by the FrequencyVector property of H. If you set the
"RespCut” property of H to "3D", FREQ must be a scalar. When FREQ is a row vector,
plotResponse draws multiple frequency responses on the same axes.

1-381

1 Alphabetical List

1-382

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"CutAngle”

Cut angle specified as a scalar. This argument is applicable only when RespCut is "Az*
or "EN". If RespCut is "Az", CutAngle must be between —90 and 90. If RespCut is "EI ",
CutAngle must be between —180 and 180.

Default: O
"Format*”

Format of the plot, using one of "Line", "Polar”, or "UV". If you set Format to "UV",
FREQ must be a scalar.

Default: "Line"
"Normal izeResponse*

Set this value to true to normalize the response pattern. Set this value to False to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to "dbi *.

Default: true
"OverlayFreq*®

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false
to plot pattern cuts against frequency in a 3-D waterfall plot. If this value is False,
FREQ must be a vector with at least two entries.

This parameter applies only when Format is not "Polar® and RespCut is not "3D".
Default: true
"Polarization”

Specify the polarization options for plotting the antenna response pattern. The allowable
values are | "None® | "Combined”™ | "H" | "V" | where

plotResponse

* "None" specifies plotting a nonpolarized response pattern
+ "Combined*® specifies plotting a combined polarization response pattern
* "H" specifies plotting the horizontal polarization response pattern

* "V" gpecifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed value is "None". This
parameter is not applicable when you set the Unit parameter value to "dbi ".

Default: "None*
"RespCut”
Cut of the response. Valid values depend on Format, as follows:

+ If Formatis "Line" or "Polar”, the valid values of RespCut are "Az", "EI ", and
"3D". The default is "Az".

+ If Formatis "UV", the valid values of RespCut are "U" and "3D". The default is "U".
If you set RespCut to "3D", FREQ must be a scalar.
"Unit"

The unit of the plot. Valid values are "db™, "mag”, "pow", or "dbi ". This parameter
determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB
scale

mag field pattern

pow power pattern

dbi directivity

Default: "db*
"AzimuthAngles*

Azimuth angles for plotting element response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles

1-383

1 Alphabetical List

1-384

for visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to "Az" or "3D" and the Format parameter is set to "Line" or
"Polar”. The values of azimuth angles should lie between —180° and 180° and must be
in nondecreasing order. When you set the RespCut parameter to *3D", you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]
"ElevationAngles~

Elevation angles for plotting element response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation

angles for visualizing the radiation pattern. This parameter is allowed only when the
RespCut parameter is set to "EI" or "3D" and the Format parameter is set to "Line*
or "Polar”. The values of elevation angles should lie between —90° and 90° and must be
in nondecreasing order. When you set the RespCut parameter to "3D", you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]
"UGrid-

U coordinate values for plotting element response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing

the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to "UV" and the RespCut parameter is set to "U" or "3D". The values of
UGrid should be between —1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]
"VGrid*®

V coordinate values for plotting element response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing

the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to "UV" and the RespCut parameter is set to "3D". The values of VGrid
should be between —1 and 1 and should be specified in nondecreasing order. You can set
the VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

plotResponse

Examples

Vertical and Horizontal Responses of Crossed-Dipole Antenna

This example shows how to create a crossed-dipole antenna operating between 100 and
900 MHz and then how to plot its vertical polarization response at 250 MHz in the form
of a 3-D polar plot.

scd = phased.CrossedDipoleAntennaElement(...
"FrequencyRange®,[100 900]*1e6);

plotResponse(scd,250e6, "Format®, "Polar”, ...
"RespCut”,"3D", "Polarization”,"V");

3D Response Pattern

MNormalized Power (dB)

1-385

1 Alphabetical List

The antenna pattern of the vertical-polarization component is almost isotropic and has a
maximum at " elevation and)" azimuth, as shown in the figure above.

Plot the antenna's horizontal polarization response. The pattern of the horizontal
polarization response also has a maximum at (" elevation and (" azimuth but no
response at +90" azimuth.

scd = phased.CrossedDipoleAntennaElement(. ..
"FrequencyRange”,[100 900]*1e6);

plotResponse(scd,250e6, "Format™, "Polar”™, ...
"RespCut”,"3D", "Polarization®, "H");

1-386

plotResponse

3D Response Pattern

Mormalized Power (dB)

Response and Directivity of Crossed-Dipole Antenna As Elevation-Cut

Create a crossed-dipole antenna operating between 100 and 900 MHz. Then, plot the
antenna's vertical polarization response at 250 MHz as an elevation cut. Display the
response from —90" to 90° elevation in).1” increments.

scd = phased.CrossedDipoleAntennaElement(. ..
"FrequencyRange”,[100 900]*1e6);

plotResponse(scd,250e6, "Format®, "Pollar™, ...
"RespCut”,"El", "ElevationAngles®,[-90:0.1:90], - ..
"Polarization®,"V");

1-387

1 Alphabetical List

Elevation Cut (azimuth angle = 0.0°)

U

R o

X< 3{.

-90

1 0

Mormalized Power (dB)

Mormalized Power (dB), Broadside at 0.00 degrees

Plot the antenna's directivity at 250 MHz as an elevation cut.

plotResponse(scd,250e6, "Format™, "Polar”™, "Unit","dbi", ...
"RespCut”,"El", "ElevationAngles”,[-90:0.1:90]);

1-388

plotResponse

Elevation Cut (azimuth angle = 0.0°)

90
120 60
.1
150 30
0
o
= g L
: ‘ 4’
2 \/
= ¥
180 > 0
&
= vy
a
-150 -30
-120 60

Directivity (dBi), Broadside at 0.00 degrees

See Also

azel2uv | uv2azel

1-389

1 Alphabetical List

1-390

release

System object: phased.CrossedDipoleAntennaElement
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

step

step

System object: phased.CrossedDipoleAntennaElement
Package: phased

Output response of antenna element

Syntax

RESP = step(H,FREQ,ANG)

Description

RESP = step(H,FREQ,ANG) returns the antenna’s voltage response, RESP, at the
operating frequencies specified in FREQ and in the directions specified in ANG. For

the crossed-dipole antenna element object, RESP is a MATLAB struct containing

two fields, RESP.H and RESP .V, representing the horizontal and vertical polarization
components of the antenna's response. Each field is an M-by-L matrix containing the
antenna response at the M angles specified in ANG and at the L frequencies specified in

FREQ.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments
H

Antenna element object.
FREQ

Operating frequencies of antenna in hertz. FREQ is a row vector of length L.

1-391

1 Alphabetical List

1-392

ANG
Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must be between —180 and 180 degrees,
inclusive. The elevation angle must be between —90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

Output Arguments
RESP

Voltage response of antenna element returned as a MATLAB struct with fields RESP.H
and RESP.V. Both RESP.H and RESP.V contain responses for the horizontal and vertical
polarization components of the antenna radiation pattern. Both RESP.H and RESP.V are
M-by-L matrices. In these matrices, M represents the number of angles specified in ANG,
and L represents the number of frequencies specified in FREQ.

Examples

Find the response of a crossed-dipole antenna at boresight, 0° azimuth and 0° elevation,
and off-boresight at 30° azimuth and 0° elevation. The antenna operates at frequencies
between 100 and 900 MHz. Find the response of the antenna at these angles at 250 MHz.

hcd = phased.CrossedDipoleAntennaElement(. ..
"FrequencyRange®,[100 900]*1e6);

ang = [0 30;0 0]:

fc = 250e6;

resp = step(hcd,fc,ang);

resp.H =
0.0000 - 1.2247i
0.0000 - 1.06071
resp.V =
-1.2247
-1.2247

step

Algorithms

The total response of a crossed-dipole antenna element is a combination of its frequency
response and spatial response. phased.CrossedDipoleAntennaElement calculates
both responses using nearest neighbor interpolation, and then multiplies the responses to
form the total response.

See Also

phitheta2azel | uv2azel

1-393

1 Alphabetical List

1-394

phased.CustomAntennaElement System object

Package: phased

Custom antenna element

Description

The phased.CustomAntennaElement object models an antenna element with a custom
response pattern. The response pattern may be defined for polarized or non-polarized
fields.

To compute the response of the antenna element for specified directions:

1 Define and set up your custom antenna element. See “Construction” on page
1-394.

2 Call step to compute the antenna response according to the properties of
phased.CustomAntennaElement. The behavior of step is specific to each object in
the toolbox.

Construction

H = phased.CustomAntennaElement creates a system object, H, to model an antenna
element with a custom response pattern. How the response pattern is specified depends
upon whether polarization is desired or not. The default pattern has an isotropic spatial
response.

* To create a nonpolarized response pattern, set the SpecifyPolarizationPattern
property to False (default). Then, use the RadiationPattern property to set the
response pattern.

+ To create a polarized response pattern, set the SpecifyPolarizationPattern
property to true. Then, use any or all of the HorizontalMagnitudePattern,
HorizontalPhasePattern, VerticalMagnitudePattern, and
VerticalPhasePattern properties to set the response pattern.

The output response of the step method depends on whether polarization is set or not.

H = phased.CustomAntennakElement(Name,Value) creates a custom
antenna object, H, with each specified property Name set to the specified

phased. CustomAntennaElement System object

Value. You can specify additional name-value pair arguments in any order as
(Namel,Valuel,...,NameN,ValueN).

Properties

FrequencyVector
Response and pattern frequency vector

Specify the frequencies (in Hz) at which the frequency response and antenna patterns are
to be returned, as a 1-by-L row vector. The elements of the vector must be in increasing
order. The antenna element has no response outside the frequency range specified by the
minimum and maximum elements of the frequency vector.

Default: [0 1e20]
AzimuthAngles
Azimuth angles

Specify the azimuth angles (in degrees) as a length-P vector. These values are the
azimuth angles where the custom radiation pattern is to be specified. P must be greater
than 2. The azimuth angles should lie between —180 and 180 degrees and be in strictly
increasing order.

Default: [-180:180]
ElevationAngles
Elevation angles

Specify the elevation angles (in degrees) as a length-@ vector. These values are the
elevation angles where the custom radiation pattern is to be specified. @ must be greater
than 2. The elevation angles should lie between —90 and 90 degrees and be in strictly
increasing order.

Default: [-90:90]
FrequencyResponse

Frequency responses of antenna element

1-395

1 Alphabetical List

1-396

Specify the frequency responses in decibels measured at the frequencies defined in
FrequencyVector property as a 1-by-L row vector where L must equal the length of the
vector specified in the FrequencyVector property.

Default: [0 0]
SpecifyPolarizationPattern
Polarized array response

+ When the SpecifyPolarizationPattern property is set to False, nonpolarized
radiation is transmitted or received by the antenna element. In this case, use the
RadiationPattern property to set the antenna response pattern.

* When the SpecifyPolarizationPattern property is set to true, polarized
radiation is transmitted or received by the antenna element. In this case, use the
HorizontalMagnitudePattern and HorizontalPhasePattern properties to set
the horizontal polarization response pattern and the VerticalMagnitudePattern
and VerticalPhasePattern properties to set the vertical polarization response
pattern.

Default: false
RadiationPattern
Magnitude of combined antenna radiation pattern

The magnitude of the combined polarization antenna radiation pattern specified
as a @-by-P matrix or a @-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to False. Magnitude units are in dB.

+ If the value of this property is a @-by-P matrix, the same pattern is applied to all
frequencies specified in the FrequencyVector property.

+ If the value is a @-by-P-by-L array, each @-by-P page of the array specifies a pattern
for the corresponding frequency specified in the FrequencyVector property.

If the pattern contains a NaN at any azimuth and elevation direction, it is converted

to —-Inf, indicating zero response in that direction. The custom antenna object uses
interpolation to estimate the response of the antenna at a given direction. To avoid
interpolation errors, the custom response pattern should contain azimuth angles in
the range[-180,180] degrees. You should also set the range of elevation angles to [—
90,90] degrees.

phased. CustomAntennaElement System object

Default: A 181-by-361 matrix with all elements equal to 0 dB
HorizontalMagnitudePattern
Magnitude of horizontal polarization component of antenna radiation pattern

The magnitude of the horizontal polarization component of the antenna radiation pattern
specified as a @-by-P matrix or a @-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to true. Magnitude units are in dB.

+ If the value of this property is a @-by-P matrix, the same pattern is applied to all
frequencies specified in the FrequencyVector property.

+ If the value is a @-by-P-by-L array, each @-by-P page of the array specifies a pattern
for the corresponding frequency specified in the FrequencyVector property.

If the magnitude pattern contains a NaN at any azimuth and elevation direction, it is
converted to - Inf, indicating zero response in that direction. The custom antenna object
uses interpolation to estimate the response of the antenna at a given direction. To avoid
interpolation errors, the custom response pattern should contain azimuth angles in the
range [-180,180]° nd elevation angles in the range [-90,90]°.

Default: A 181-by-361 matrix with all elements equal to 0 dB
HorizontalPhasePattern
Phase of horizontal polarization component of antenna radiation pattern

The phase of the horizontal polarization component of the antenna radiation pattern
specified as a @-by-P matrix or a @-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to true. Phase units are in degrees.

+ If the value of this property is a @-by-P matrix, the same pattern is applied to all
frequencies specified in the FrequencyVector property.

+ If the value is a @-by-P-by-L array, each @-by-P page of the array specifies a pattern
for the corresponding frequency specified in the FrequencyVector property.

The custom antenna object uses interpolation to estimate the response of the antenna
at a given direction. To avoid interpolation errors, the custom response pattern should
contain azimuth angles in the range[-180,180]° and elevation angles in the range [—
90,90]°.

1-397

1 Alphabetical List

1-398

Default: A 181-by-361 matrix with all elements equal to 0°
VerticalMagnitudePattern
Magnitude of vertical polarization component of antenna radiation pattern

The magnitude of the vertical polarization component of the antenna radiation pattern
specified as a @-by-P matrix or a @-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to true. Magnitude units are in dB.

+ If the value of this property is a @-by-P matrix, the same pattern is applied to all
frequencies specified in the FrequencyVector property.

+ If the value is a @-by-P-by-L array, each @-by-P page of the array specifies a pattern
for the corresponding frequency specified in the FrequencyVector property.

If the pattern contains a NaN at any azimuth and elevation direction, it is converted

to —-Inf, indicating zero response in that direction. The custom antenna object uses
interpolation to estimate the response of the antenna at a given direction. To avoid
interpolation errors, the custom response pattern should contain azimuth angles in the
range[-180,180]° and elevation angles in the range [-90,90]°.

Default: A 181-by-361 matrix with all elements equal to 0 dB
VerticalPhasePattern
Phase of vertical polarization component of antenna radiation pattern

The phase of the vertical polarization component of the antenna radiation pattern
specified as a @-by-P matrix or a @-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to true. Phase units are in degrees.

+ If the value of this property is a @-by-P matrix, the same pattern is applied to all
frequencies specified in the FrequencyVector property.

+ If the value is a @-by-P-by-L array, each @-by-P page of the array specifies a pattern
for the corresponding frequency specified in the FrequencyVector property.

The custom antenna object uses interpolation to estimate the response of the antenna
at a given direction. To avoid interpolation errors, the custom response pattern should
contain azimuth angles in the range[-180,180]° and elevation angles in the range [—
90,90]°.

phased. CustomAntennaElement System object

Default: A 181-by-361 matrix with all elements equal to 0°

Methods

clone

directivity
getNumInputs
getNumQOutputs

1sLocked

isPolarizationCapable

pattern
patternAzimuth
patternElevation

plotResponse

release

step

Create custom antenna object with same
property values

Directivity of custom antenna element
Number of expected inputs to step method
Number of outputs from step method

Locked status for input attributes and
nontunable properties

Polarization capability

Plot custom antenna element directivity
and patterns

Plot custom antenna element directivity or
pattern versus azimuth

Plot custom antenna element directivity or
pattern versus elevation

Plot response pattern of antenna

Allow property value and input
characteristics changes

Output response of antenna element

1-399

1 Alphabetical List

1-400

Examples

Response and Directivity of Custom Antenna

Create a user-defined antenna with a cosine pattern. Then, plot an elevation cut of the
antenna's power response.

The user-defined pattern is omnidirectional in the azimuth direction and has a cosine
pattern in the elevation direction. Assume the antenna operates at 1 GHz. Get the
response at 0 degrees azimuth and 30 degrees elevation.

fc = 1e9;

sCust = phased.CustomAntennaElement;

sCust_AzimuthAngles = -180:180;

sCust_ElevationAngles = -90:90;

sCust._RadiationPattern = mag2db(repmat(cosd(sCust.ElevationAngles)”, ...
1,numel (sCust._AzimuthAngles)));

resp = step(sCust,fc,[0;30])

resp =

0.8660

Plot an elevation cut of the power response.

pattern(sCust,fc,0,[-90:90],--.
"CoordinateSystem”, "polar”®, . ..
"Type*, "powerdb*®)

phased. CustomAntennaElement System object

Elevation Cut (azimuth angle = 0.0°)

U

1 0

TFRAL)
e ’ ahaﬂ

-90

180

Mormalized Power (dB)

Mormalized Power (dB), Broadside at 0.00 degrees

Plot an elevation cut of the directivity.
pattern(sCust,fc,0,[-90:90], - ..

"CoordinateSystem®, "polar”, ...
"Type®, "directivity”)

1-401

1 Alphabetical List

1-402

Elevation Cut (azimuth angle = 0.0°)

120

150 "
S

N

-120

-90

Directivity (dBi), Broadside at 0.00 degrees
Antenna Radiation Pattern in U-V Coordinates

Define a custom antenna in u-v space. Then, calculate and plot the response.

Define the radiation pattern (in dB) of an antenna in terms of © and v coordinates within
the unit circle.

u -1:0.01:1;

Y, -1:0.01:1;

[u grid,v_grid] = meshgrid(u,v);

pat_uv = sqrt(1 - u grid.”2 - v_grid."2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

phased. CustomAntennaElement System object

Create an antenna with this radiation pattern. Convert u-v coordinates to azimuth and

elevation coordinates.

[pat_azel,az,el] = uv2azelpat(pat_uv,u,Vv);

ha = phased.CustomAntennaElement(. ..

"AzimuthAngles® ,az, "ElevationAngles”,el, ...

"RadiationPattern”,pat_azel);

Calculate the response in the direction u = 0.5, v = 0. Assume the antenna operates at 1
GHz. The output of the step method is in linear units.

dir_uv = [0.5;0];

dir_azel = uv2azel(dir_uv);
fc = 1e9;

resp = step(ha,fc,dir_azel)

resp =

1.1048

Plot the 3D response in u-v coordinates.

pattern(ha,fc,[-1:.01:1],[-1:.01:1], ...

"CoordinateSystem”, "uv", ...
"Type*®, "powerdb®)

1-403

1 Alphabetical List

=
ra

=}
ha

0.4 4

o
o

-0.8 4

Mormalized Power (dB)

3D Response Pattern in u-v space

i
-
o

1-404

Display the antenna response as a line plot in u-v coordinates.

pattern(ha,fc,[-1:.01:1],0, ...
"CoordinateSystem®,"uv”®, ...
"Type", "powerdb™)

01

-0.1

-0.2

-0.3

-0.4

-0.5

-0.8

-0.7

-0.8

-0.9

-1

Mormalized Power (dB)

phased. CustomAntennaElement System object

Mormalized Power (dB)

Response in U Space

-1 08 06 -04 -02 0 0.2 0.4 0.6 0.8 1

Polarized Antenna Radiation Patterns

Model a short dipole antenna oriented along the -axis of the local antenna coordinate
system. For this type of antenna, the horizontal and vertical components of the electric

wpd L« wpl L -
field are given by Ey = &=sin(az) 4 Ev = —45 = sin(el) cos(az)

Specify a normalized radiation pattern of a short dipole antenna terms of azimuth,

az, and elevation, ¢/, coordinates. The vertical and horizontal radiation patterns are
normalized to a maximum of unity.

az [-180:180];
el [-90:90];
[az_grid,el_grid] = meshgrid(az,el);

1-405

1 Alphabetical List

1-406

horz_pat_azel = ...
mag2db(abs(sind(az_grid)));

vert_pat_azel = __.
mag2db(abs(sind(el_grid).*cosd(az_grid)));

Set up the antenna. Specify the SpecifyPolarizationPattern property to produce
polarized radiation. In addition, use the HorizontalMagnitudePattern and
VerticalMagnitudePattern properties to specify the pattern magnitude values. The
HorizontalPhasePattern and VerticalPhasePattern properties take default
values of zero.

sCust = phased.CustomAntennaElement(. ..
"AzimuthAngles” ,az, "ElevationAngles”,el, ...
"SpecifyPolarizationPattern® ,true, ...
"HorizontalMagnitudePattern® ,horz_pat_azel, ...
"VerticalMagnitudePattern®,vert_pat_azel);

Assume the antenna operates at 1 GHz.

fc = 1e9;

Display the vertical response pattern.

pattern(sCust,fc,[-180:180],[-90:90], - -.
"CoordinateSystem®, "polar”, ...

"Type*, "powerdb”, ...
"Polarization®, V")

phased. CustomAntennaElement System object

W MUESRITDE Fatesnnn

Mormalized Power (dB)

Display the horizontal response pattern.

pattern(sCust,fc,[-180:180],[-90:90], - - .
"CoordinateSystem®, "polar”, ...
"Type*®, "powerdb”, ...
"Polarization”,"H")

1-407

1 Alphabetical List

3D Response Pattern

ElD

Mormalized Power (dB)

The combined polarization response, shown below, illustrates the x-axis null of the
dipole.

pattern(sCust,fc,[-180:180],[-90:90], - - .
"CoordinateSystem®, "polar”, ...
"Type*®, "powerdb”, ...

"Polarization”, "combined®)

1-408

phased. CustomAntennaElement System object

3D Response Pattern

z

Az D
FIBD

-20

-25

Az 90 -30
ElIQ

Mormalized Power (dB)

-35
40
45

-50

Algorithms

The total response of a custom antenna element is a combination of its frequency
response and spatial response. phased.CustomAntennaElement calculates both
responses using nearest neighbor interpolation, and then multiplies the responses to
form the total response.

See Also

phased.ConformalArray | phased.CosineAntennaElement |
phased.CrossedDipoleAntennaElement | phased. IsotropicAntennaElement

1-409

1 Alphabetical List

| phased.ShortDipoleAntennaElement | phased.ULA | phased.URA |
phitheta2azel | phitheta2azelpat | uv2azel | uv2azelpat

1-410

clone

clone

System object: phased.CustomAntennaElement
Package: phased

Create custom antenna object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1-411

1 Alphabetical List

1-412

directivity
System object: phased.CustomAntennaElement

Package: phased

Directivity of custom antenna element

Syntax

D = directivity(H,FREQ,ANGLE)

Description

D = directivity(H,FREQ,ANGLE) returns the “Directivity” on page 1-414 of a
custom antenna element, H, at frequencies specified by FREQ and in direction angles
specified by ANGLE.

Input Arguments

H — Custom antenna element
System object

Custom antenna element specified as a phased.CustomAntennaElement System
object.
Example: H = phased.CustomAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

* For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is

directivity

returned as —Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement,
which use the FrequencyVector property.

+ For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as —InF.

Example: [1e8 2e8]
Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between —180° and 180°.
The elevation angle must lie between —90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.

Example: [45 60; O 10]
Data Types: double

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the

M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

1-413

1 Alphabetical List

1-414

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element

or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

Urad (9’ (P)

D=4rn
Ptotal

where U,,q(0,9) is the radiant intensity of a transmitter in the direction (6,p) and Pya
1s the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of Custom Antenna Element

Compute the directivity of a custom antenna element.

directivity

Define an antenna pattern for a custom antenna element in azimuth-elevation space.
The pattern is omnidirectional in the azimuth direction and has a cosine pattern in the
elevation direction. Assume the antenna operates at 1 GHz. Get the response at zero
degrees azimuth and from -30 to 30 degrees elevation.

myAnt = phased.CustomAntennaElement;

myAnt.AzimuthAngles = -180:180;

myAnt._ElevationAngles = -90:90;

myAnt.RadiationPattern = mag2db(repmat(cosd(myAnt.ElevationAngles)”, ...
1,numel (myAnt._AzimuthAngles)));

Calculate the directivities as a function of elevation for zero azimuth angle.

ang = [0,0,0,0,0,0,0;-30,-20,-10,0,10,20,30];
freq = 1le9;
d = directivity(myAnt, freq,ang)

d =

.5115
.2206
.6279
.7609
.6279
.2206
.5115

ORRPRRRLRERLRO

The directivity is maximum at " elevation.

See Also

phased.CustomAntennaElement.pattern

1-415

1 Alphabetical List

getNumlinputs

System object: phased.CustomAntennaElement
Package: phased

Number of expected inputs to step method

Syntax

N = getNumlnputs(H)

Description

N = getNumlnputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) you must use when calling the step method. This value
changes when you alter properties that turn inputs on or off.

1-416

getNumOutputs

getNumOutputs

System object: phased.CustomAntennaElement
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)
Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1-417

1 Alphabetical List

1-418

isLocked

System object: phased.CustomAntennaElement
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the CustomAntennaElement
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

isPolarizationCapable

isPolarizationCapable

System object: phased.CustomAntennaElement
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description

flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating
whether the phased.CustomAntennaElement System object supports polarization. An
antenna element supports polarization if it can create or respond to polarized fields. This
antenna object supports both polarized and nonpolarized fields.

Input Arguments

h — Custom antenna element
phased.CustomAntennakElement System object

Custom antenna element specified as a phased.CustomAntennaElement System
object.

Output Arguments
flag — Polarization-capability flag

Polarization-capability returned as a Boolean value true if the antenna element
supports polarization or False if it does not. The returned value depends upon the value
of the SpecifyPolarizationPattern property. If SpecifyPolarizationPattern is
true, then flag is true. Otherwise it is False.

1-419

1 Alphabetical List

1-420

Examples

Custom Antenna Element Polarization Capability

Determine whether the phased.CustomAntennaElement antenna element supports
polarization when SpecifyPolarizationPattern is set to true.

h = phased.CustomAntennaElement(...
"SpecifyPolarizationPattern”,true);

isPolarizationCapable(h)

ans =

1

The returned value true (1) shows that this antenna element supports polarization
when the "SpecifyPolarizationPattern” property is set to true.

pattern

pattern

System object: phased.CustomAntennaElement
Package: phased

Plot custom antenna element directivity and patterns

Syntax

pattern(sElem, FREQ)
pattern(sElem,FREQ,AZ)
pattern(sElem,FREQ,AZ,EL)

pattern(,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern(_)

Description

pattern(skElem, FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sElem. The operating frequency is specified in FREQ.

pattern(sElem,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sElem,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the "CoordinateSystem” parameter is set to "uv”, then AZ_ANG contains the

U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

1-421

1 Alphabetical List

1-422

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-1674

Input Arguments

sElem — Custom antenna element
System object

Custom antenna element, specified as a phased.CustomAntennaElement System
object.

Example: sElem = phased.CustomAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

+ For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as —InF. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement,
which use the FrequencyVector property.

* For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as —Inf.

Example: [1e8 2e8]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-
valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between —180° and 180°.

pattern

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.

Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where NN is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between —90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.

Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"CoordinateSystem”™ — Plotting coordinate system
"polar” (default) | "rectangular® | "uv®

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of "CoordinateSystem” and one of "polar”, "rectangular”, or
"uv”. When "CoordinateSystem” is set to "polar” or "rectangular”, the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between —180° and 180°. EL values must lie between —90° and 90°.
If "CoordinateSystem” is set to "uv™, AZ and EL specify U and U coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: "uv”

Data Types: char

1-423

1 Alphabetical List

1-424

"Type" — Displayed pattern type
"directivity” (default) | "efield” | "power” | "powerdb*®

Displayed pattern type, specified as the comma-separated pair consisting of "Type* and
one of
+ "directivity™ — directivity pattern measured in dBi.

+ T"efield" — field pattern of the sensor or array. For acoustic sensors, the displayed
pattern is for the scalar sound field.

* "power " — power pattern of the sensor or array defined as the square of the field
pattern.

+ "powerdb® — power pattern converted to dB.
Example: "powerdb*
Data Types: char

"Normalize" — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
"Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set "Type” to "directivity”, this parameter does not apply. Directivity
patterns are already normalized.

Example:
Data Types: logical

"PlotStyle” — Plotting style
"overlay” (default) | "waterfall*

Plotting style, specified as the comma-separated pair consisting of "Plotstyle”

and either "overlay” or "waterfall". This parameter applies when you specify
multiple frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the
arguments AZ or EL to a scalar.

Example:

Data Types: char

"Polarization” — Polarized field component
"combined” (default) | "H" | "V*©

pattern

Polarized field component to display, specified as the comma-separated pair consisting
of 'Polarization' and "combined®, "H", or "V". This parameter applies only when

the sensors are polarization-capable and when the "Type® parameter is not set to
"directivity”. This table shows the meaning of the display options

"Polarization” Display

"combined*® Combined H and V polarization
components

"H" H polarization component

VT V polarization component

Example: "V*©
Data Types: char

Output Arguments

PAT — Element pattern
M-by-N real-valued matrix

Element pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-N

real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL_ANG.

1-425

1 Alphabetical List

1-426

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element

or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

Urad (9> (P)

D=4rn
P, total

where U,,q(0,9) is the radiant intensity of a transmitter in the direction (6,p) and Py,
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw
2-D azimuth and elevation pattern plots. These methods are azimuthPattern and
elevationPattern.

pattern

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL, "Namel*, "Valuel®, ..., "NameN", "ValueN")

plotResponse Inputs

plotResponse Description

pattern Inputs

H argument

Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument

Operating frequency.

FREQ argument (no change)

V argument

Propagation speed. This
argument is used only for
arrays.

"PropagationSpeed” name-
value pair. This parameter is
only used for arrays.

"Format” and "RespCut*”
name-value pairs

These options work together to
let you create a plot in angle
space (line or polar style) or

UV space. They also determine
whether the plot is 2-D or 3-
D. This table shows you how to
create different types of plots
using plotResponse.

Display space

Angle space Set

(2D) "RespCut”
to "Az" or
"EI". Set
"Format” to
"line” or
"polar-.

Set the display
axis using
either the

the
"AzimuthAngl
or

"CoordinateSystem" name-
value pair used together with
the AZ and EL input arguments.

"CoordinateSystem” has
the same options as the
plotResponse method
*Format®name-value pair,
except that "line” is now
named "rectangular”. The
table shows how to create
different types of plots using
pattern.

Display space

Angle space Set

(2D) "Coordinate
System*® to
"rectangularf
or "polar”.
Specify either
AZ or EL as a
scalar.

"ElevationAn

Angle space Set

(3D) "Coordinate

1-427

1 Alphabetical List

plotResponse Inputs

plotResponse Description

pattern Inputs

1-428

Display space

Display space

name-value
pairs.

Angle space
(3D)

Set
"RespCut*
to "3D". Set
"Format” to
"line” or
"polar-.

Set the display
axis using

both the
"AzimuthAngl
and"Elevatio
name-value
pairs.

System” to
"rectangular
or "polar”®.
Specify both

AZ and EL as
vectors.

UV space (2D)

Set
"Coordinate
System*® to
"uv". Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space scalar.

UV space (3D)

UV space (2D)

Set
"RespCut”
to"U". Set
"Format*”
to "UV*. Set
the display
range using
the "UGrid*®
name-value
pair.

Set
"Coordinate
System*® to
"uv®. Use AZ
to specify a U-
space vector.
Use EL to
specify a V-
space vector.

UV space (3D)

Set
"RespCut”
to"3D". Set
"Format” to
"UV*®. Set the
display range
using both
the "UGrid*

and "VGrid*

If you set CoordinateSystem
to "uv", enter the UV grid
values using AZ and EL.

pattern

plotResponse Inputs

plotResponse Description

pattern Inputs

Display space

name-value
pairs.

"CutAngle® name-value pair

Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
"RespCut” is set to "Az" or
"EIl", use "CutAngle” to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

"Normal izeResponse” name-

value pair

Normalizes the plot.
When “"Unit” is set to
"dbi ", you cannot specify
"Normal izeResponse”.

"Normal ize®™ name-value
pair. When "Type”® is set to
"directivity”,

you cannot specify
*Normalize®.

"OverlayFreq" name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when "Format”® is

set to "line” or "uv”® and
"RespCut” is not set to "3D".
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

"PlotStyle® name-value pair
plots multiple frequencies on the
same 2-D plot.

The values "overlay® and
"waterfall” correspond to
"OverlayFreq" values of
true and false. The option
"waterfall” is allowed only
when "CoordinateSystem” is
set to "rectangular” or “"uv".

"Polarization” name-value
pair

Determines how to plot
polarized fields. Options are
"None"®, "Combined®, "H", or
VA

"Polarization” name-value
pair determines how to plot
polarized fields. The "None*
option is removed. The options
"Combined”, "H", or "V~ are
unchanged.

1-429

1 Alphabetical List

plotResponse Inputs

plotResponse Description

pattern Inputs

"Unit"® name-value pair

Determines the plot units.
Choose "db*", "mag”, "pow",
or "dbi ", where the default is
“db-".

"Type" name-value pair, uses
equivalent options with different
names

plotResponse pattern

“db* "powerdb*
"mag*” "efield"
"pow* "power "

“dbi " "directivity”

"Weights" name-value pair

Array element tapers (or
weights).

"Weights" name-value pair (no
change).

"AzimuthAngles”™ name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

"ElevationAngles®™ name-
value pair

Elevation angles used to
display the antenna or array
response.

EL argument

"UGrid" name-value pair

Contains U coordinates in UV-
space.

AZ argument when
"CoordinateSystem" name-
value pair is set to "uv"

"VGrid® name-value pair

Contains V-coordinates in UV-
space.

EL argument when
"CoordinateSystem® name-
value pair is set to "uv”

Examples

Power and Directivity Patterns of Custom Antenna

Create a custom antenna with a cosine pattern. Show the response at boresight. Then,
plot the antenna's field and directivity patterns.

Create the antenna and calculate the response. The user-defined pattern is
omnidirectional in the azimuth direction and has a cosine pattern in the elevation
direction. Assume the antenna works at 1 GHz.

fc = 1e9;

1-430

pattern

sCust = phased.CustomAntennaElement;
sCust_AzimuthAngles = -180:180;
sCust_ElevationAngles = -90:90;

sCust._RadiationPattern = mag2db(repmat(cosd(sCust._ElevationAngles)”, .

1,numel (sCust._AzimuthAngles)));
resp = step(sCust,fc,[0;0])
resp =

1

Plot an elevation cut of the magnitude response as a line plot.

pattern(sCust,fc,0,[-90:90], - -.
"CoordinateSystem”, "rectangular”, ...
"Type*®,"efield")

1-431

1 Alphabetical List

Elevation Cut (azimuth angle = 0.0°)

e T T T
\

1 T T

06r T

Normalized Magnitude
i
n

01r 7

D 1 I I I I 1 I I I
-100 -80 -60 -40 -20 0 20 40 60 80 100

Elevation Angle (degrees)

Plot an elevation cut of the directivity as a line plot, showing that the maximum
directivity is approximately 2 dB.

pattern(sCust,fc,0,[-90:90],..-.

"CoordinateSystem®, "rectangular”, ...
"Type*®,"directivity")

1-432

pattern

Directivity (dBi)

Elevation Cut (azimuth angle = 0.0°)
..]D L T T T T T T T T T]

1 I I I I 1 I I I
-100 80 -60 -40 -20 0 20 40 60 80 100
Elevation Angle (degrees)

Pattern of Custom Antenna Over Selected Range of Angles

Create an custom antenna System object. The user-defined pattern is omnidirectional
in the azimuth direction and has a cosine pattern in the elevation direction. Assume the
antenna operates at a frequency of 1 GHz. First show the response at boresight. Display
the 3-D pattern for a 60 degree range of azimuth and elevation angles centered at 0
degrees azimuth and 0 degrees elevation in 0.1 degree increments.

fc = 1e9;

sCust = phased.CustomAntennaElement;

sCust_AzimuthAngles = -180:180;

sCust_ElevationAngles = -90:90;

sCust._RadiationPattern = mag2db(repmat(cosd(sCust.ElevationAngles)”, ...
1,numel (sCust._AzimuthAngles)));

1-433

1 Alphabetical List

resp = step(sCust,fc,[0;0])

resp

Plot the power pattern for a range of angles.
pattern(sCust,fc,[-30:0.1:30],[-30:0.1:30], - --

"CoordinateSystem”, "polar”®, . ..
"Type®, "power™)

1-434

pattern

3D Response Pattern

10495
z

0.9 %
o
g
y T
Az 90 0.85 E
: =]
EID =

0.8

0.75

See Also
phased.CustomAntennaElement.patternAzimuth |
phased.CustomAntennakElement.patternElevation

Introduced in R2015a

1-435

1 Alphabetical List

1-436

patternAzimuth

System object: phased.CustomAntennaElement
Package: phased

Plot custom antenna element directivity or pattern versus azimuth

Syntax

patternAzimuth(sElem, FREQ)
patternAzimuth(sElem, FREQ,EL)
patternAzimuth(sElem,FREQ,EL ,Name,Value)
PAT = patternAzimuth(__)

Description

patternAzimuth(sElem, FREQ) plots the 2-D element directivity pattern versus
azimuth (in dBi) for the element sElem at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sElem,FREQ,EL), in addition, plots the 2-D element directivity
pattern versus azimuth (in dBi) at the elevation angle specified by EL. When EL is a
vector, multiple overlaid plots are created.

patternAzimuth(sElem,FREQ,EL,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth() returns the element pattern. PAT is a matrix

whose entries represent the pattern at corresponding sampling points specified by the
"Azimuth® parameter and the EL input argument.

Input Arguments

sElem — Custom antenna element
System object

patternAzimuth

Custom antenna element, specified as a phased.CustomAntennaElement System
object.

Example: sElem = phased.CustomAntennaElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

* For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as —InF. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement,
which use the FrequencyVector property.

* For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as —Inf.

Example: 1e8

Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where N is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between —90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.

Example: [0,10,20]
Data Types: double
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1-437

1 Alphabetical List

quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"Type" — Displayed pattern type
"directivity” (default) | "efield” | "power

powerdb*®

Displayed pattern type, specified as the comma-separated pair consisting of "Type" and
one of
+ "directivity™ — directivity pattern measured in dBi.

+ "efield"™ — field pattern of the sensor or array. For acoustic sensors, the displayed
pattern is for the scalar sound field.

+ "power " — power pattern of the sensor or array defined as the square of the field
pattern.

* "powerdb® — power pattern converted to dB.
Example: "powerdb*®
Data Types: char

"Azimuth" — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of "Azimuth® and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: "Azimuth®,[-90:2:90]

Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of azimuth values determined by the "Azimuth® name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

1-438

patternAzimuth

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element

or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

Urad (6> (P)

D=4rn
P total

where U,,q(0,9) is the radiant intensity of a transmitter in the direction (6,¢) and Pia
1s the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Reduced Azimuth Pattern of Custom Antenna Element

Create an antenna with a custom response. The user-defined pattern has a sine pattern
in the azimuth direction and a cosine pattern in the elevation direction. Assume the
antenna operates at a frequency of 500 MHz. Plot an azimuth cut of the directivity of the

1-439

1 Alphabetical List

custom antenna element at 0 and 30 degrees elevation. Assume the operating frequency
is 500 MHz.

Create the antenna element.

fc = 500e6;
sCust = phased.CustomAntennaElement;
sCust.AzimuthAngles = -180:180;
sCust.ElevationAngles = -90:90;
sCust.RadiationPattern = mag2db(abs(cosd(sCust.ElevationAngles)"*sind(sCust.AzimuthAng
patternAzimuth(sCust,fc,[0 301, - -.
"Type*®, "powerdb®)

Azimuth Cut (frequency = 500 MHz)

0.0 deg elevation
30.0 deg elevation

FPower (dB), Broadside at 0.00 degrees

Plot a reduced range of azimuth angles using the Azimuth parameter.

1-440

patternAzimuth

Fower (dB)

patternAzimuth(sCust,fc,[0 30], "Azimuth®",[-45:45], ...
"Type*, "powerdb*®)

Azimuth Cut (frequency = 500 MHz)

0.0 deg elevation
30.0 deg elevation

Power (dB), Broadside at 0.00 degrees

See Also

phased.CustomAntennaElement.pattern |
phased.CustomAntennaElement.patternElevation

Introduced in R2015a

1-441

1 Alphabetical List

1-442

patternElevation

System object: phased.CustomAntennaElement
Package: phased

Plot custom antenna element directivity or pattern versus elevation

Syntax

patternElevation(sElem, FREQ)
patternElevation(sElem,FREQ,AZ)
patternElevation(skElem,FREQ,AZ,Name,Value)
PAT = patternElevation(__)

Description

patternElevation(sElem,FREQ) plots the 2-D element directivity pattern versus
elevation (in dBi) for the element sElem at zero degrees azimuth angle. The argument
FREQ specifies the operating frequency.

patternElevation(skElem,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(skElem,FREQ,AZ,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation() returns the element pattern. PAT is a matrix
whose entries represent the pattern at corresponding sampling points specified by the
"Elevation” parameter and the AZ input argument.

Input Arguments

sElem — Custom antenna element
System object

Custom antenna element, specified as a phased.CustomAntennaElement System
object.

patternElevation

Example: sElem = phased.CustomAntennaElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

* For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as —Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement,
which use the FrequencyVector property.

+ For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as —Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between —180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.

Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1-443

1 Alphabetical List

1-444

quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"Type" — Displayed pattern type
"directivity” (default) | "efield” | "power

powerdb*®

Displayed pattern type, specified as the comma-separated pair consisting of "Type" and
one of
+ "directivity" — directivity pattern measured in dBi.

+ "efield” — field pattern of the sensor or array. For acoustic sensors, the displayed
pattern is for the scalar sound field.

+ "power® — power pattern of the sensor or array defined as the square of the field
pattern.

* "powerdb® — power pattern converted to dB.
Example: "powerdb*®
Data Types: char

"Elevation” — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of "Elevation*®
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.

Example: "Elevation”,[-90:2:90]
Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the "Elevation” name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

patternElevation

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element

or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

Urad (6> (P)

D=4rn
P total

where U,,q(0,9) is the radiant intensity of a transmitter in the direction (6,¢) and Pia
1s the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Reduced Elevation Pattern of Custom Antenna Element

Create an antenna with a custom response. The user-defined pattern has a sine pattern
in the azimuth direction and a cosine pattern in the elevation direction. Assume the
antenna operates at a frequency of 500 MHz. Plot an elevation cut of the power of the

1-445

1 Alphabetical List

custom antenna element at 0 and 30 degrees elevation. Assume the operating frequency
is 500 MHz.

Create the antenna element.

fc = 500e6;
sCust = phased.CustomAntennaElement;
sCust.AzimuthAngles = -180:180;
sCust.ElevationAngles = -90:90;
sCust.RadiationPattern = mag2db(abs(cosd(sCust.ElevationAngles)"*sind(sCust.AzimuthAng
patternkElevation(sCust,fc,[0 30],--.
"Type*®, "powerdb®)

Elevation Cut (frequency = 500 MHz)
80

0.0 deg azimuth
30.0 deg azimuth

sl LTS :‘ﬁ;‘ L
© \WIKHRAL)

Power (dB), Broadside at 0.00 degrees

Plot a reduced range of elevation angles using the Azimuth parameter.

1-446

patternElevation

Fower (dB)

patternElevation(sCust,fc,[0 30], "Elevation®,[-45:45], ...

"Type*, "powerdb*®)

Elevation Cut {frequency = 500 MHz)

90

0.0 deg azimuth
30.0 deg azimuth

180

S

-120 -60
-890

Power (dB), Broadside at 0.00 degrees

See Also

phased.CustomAntennaElement.pattern |
phased.CustomAntennaElement.patternAzimuth

Introduced in R2015a

1-447

1 Alphabetical List

1-448

plotResponse

System object: phased.CustomAntennaElement
Package: phased

Plot response pattern of antenna

Syntax

plotResponse(H, FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse()

Description

plotResponse(H, FREQ) plots the element response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse() returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments

H
Element System object
FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row vector. FREQ must

lie within the range specified by the FrequencyVector property of H. If you set the
"RespCut” property of H to "3D", FREQ must be a scalar. When FREQ is a row vector,
plotResponse draws multiple frequency responses on the same axes.

plotResponse

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"CutAngle”

Cut angle specified as a scalar. This argument is applicable only when RespCut is "Az*
or "EN". If RespCut is "Az", CutAngle must be between —90 and 90. If RespCut is "EI ",
CutAngle must be between —180 and 180.

Default: O
"Format*”

Format of the plot, using one of "Line", "Polar”, or "UV". If you set Format to "UV",
FREQ must be a scalar.

Default: "Line"
"Normal izeResponse*

Set this value to true to normalize the response pattern. Set this value to False to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to "dbi *.

Default: true
"OverlayFreq*®

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false
to plot pattern cuts against frequency in a 3-D waterfall plot. If this value is False,
FREQ must be a vector with at least two entries.

This parameter applies only when Format is not "Polar® and RespCut is not "3D".
Default: true
"Polarization”

Specify the polarization options for plotting the antenna response pattern. The allowable
values are | "None® | "Combined”™ | "H" | "V" | where

1-449

1 Alphabetical List

* "None" specifies plotting a nonpolarized response pattern
+ "Combined*® specifies plotting a combined polarization response pattern
* "H" specifies plotting the horizontal polarization response pattern

* "V" gpecifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed value is "None". This
parameter is not applicable when you set the Unit parameter value to "dbi ".

Default: "None*
"RespCut”
Cut of the response. Valid values depend on Format, as follows:

+ If Formatis "Line" or "Polar”, the valid values of RespCut are "Az", "EI ", and
"3D". The default is "Az".

+ If Formatis "UV", the valid values of RespCut are "U" and "3D". The default is "U".
If you set RespCut to "3D", FREQ must be a scalar.
"Unit"

The unit of the plot. Valid values are "db™, "mag”, "pow", or "dbi ". This parameter
determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB
scale

mag field pattern

pow power pattern

dbi directivity

Default: "db*
"AzimuthAngles*

Azimuth angles for plotting element response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles

1-450

plotResponse

for visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to "Az" or "3D" and the Format parameter is set to "Line" or
"Polar”. The values of azimuth angles should lie between —180° and 180° and must be
in nondecreasing order. When you set the RespCut parameter to *3D", you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]
"ElevationAngles~

Elevation angles for plotting element response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation

angles for visualizing the radiation pattern. This parameter is allowed only when the
RespCut parameter is set to "EI" or "3D" and the Format parameter is set to "Line*
or "Polar”. The values of elevation angles should lie between —90° and 90° and must be
in nondecreasing order. When you set the RespCut parameter to "3D", you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]
"UGrid-

U coordinate values for plotting element response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing

the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to "UV" and the RespCut parameter is set to "U" or "3D". The values of
UGrid should be between —1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]
"VGrid*®

V coordinate values for plotting element response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing

the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to "UV" and the RespCut parameter is set to "3D". The values of VGrid
should be between —1 and 1 and should be specified in nondecreasing order. You can set
the VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

1-451

1 Alphabetical List

1-452

Examples

Plot Response and Directivity of Custom Antenna
Create a custom antenna with a cosine pattern. Then, plot the antenna's response.

Create the antenna and calculate the response. The user-defined pattern is
omnidirectional in the azimuth direction and has a cosine pattern in the elevation
direction. Assume the antenna works at 1 GHz.

fc = 1e9;

sCust = phased.CustomAntennaElement;

sCust_AzimuthAngles = -180:180;

sCust_ElevationAngles = -90:90;

sCust._RadiationPattern = mag2db(repmat(cosd(sCust.ElevationAngles)”, ...
1,numel (sCust._AzimuthAngles)));

resp = step(sCust,fc,[0;0]);

Plot an elevation cut of the magnitude response as a line plot.

plotResponse(sCust, fc, "RespCut”, "EIl", "Format”,"Line","Unit","mag”);

plotResponse

Elevation Cut (azimuth angle = 0.0°)
1 . T T T = T T T
0.9 \ .
0.8 \'.
i
\ \
Borf \ \
= \ I'n,
= \
o 0.6 \ .
o | |
= \ \
- 0.5 i I|I
{ | \
g I||I I|I III
o { |
T 04 \
E II. I|
Z 03 ". ". / i
0.2 \ X \ /
- | \
I| ! II
| \ .
0.1 u f ||
I| III
D i i i i i III i i
=200 -150 -100 =50 1] 50

100 150
Elevation Angle (degrees)

200

Plot an elevation cut of the directivity as a line plot, showing that the maximum
directivity is approximately 2 dB.

plotResponse(sCust, fc, "RespCut”, "EIl", "Format”,"Line", "Unit","dbi");

1-453

1 Alphabetical List

Directivity (dBi)

1-454

Elevation Cut (azimuth angle = 0.0°)

=200 -150 -100 -50 0 50 100 150 200
Elevation Angle (degrees)

Plot Response of Custom Antenna Over Selected Range of Angles

Create an antenna with a custom response. The user-defined pattern is omnidirectional
in the azimuth direction and has a cosine pattern in the elevation direction. Assume the
antenna operates at a frequency of 1 GHz. Display the 3-D response for a 60 degree range
of azimuth and elevation angles centered at 0 degrees azimuth and O degrees elevation in
0.1 degree increments.

fc = 1e9;

sCust = phased.CustomAntennaElement;

sCust_AzimuthAngles = -180:180;

sCust_ElevationAngles = -90:90;

sCust._RadiationPattern = mag2db(repmat(cosd(sCust.ElevationAngles)”, ...
1,numel (sCust._AzimuthAngles)));

plotResponse

resp = step(sCust,fc,[0;0]);

plotResponse(sCust, fc, "RespCut”,"3D", "Format”, "Polar”, . ..
“AzimuthAngles®,[-30:0.1:30], "ElevationAngles™, ...
[-30:0.1:30], “Unit", "pow™);

3D Response Pattern

10.95
z

0.9 %
o
g
y =
Az 90 0.85 E
: Q
EID —

0.8

0.75

See Also

azel2uv | uv2azel

1-455

1 Alphabetical List

1-456

release

System object: phased.CustomAntennaElement
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

step

step

System object: phased.CustomAntennaElement
Package: phased

Output response of antenna element

Syntax

RESP = step(H,FREQ,ANG)

Description

RESP = step(H,FREQ,ANG) returns the antenna’s voltage response RESP at operating
frequencies specified in FREQ and directions specified in ANG. The form of RESP
depends upon whether the antenna element supports polarization as determined by

the SpecifyPolarizationPattern property. If SpecifyPolarizationPattern

is set to False, RESP is an M-by-L matrix containing the antenna response at

the M angles specified in ANG and at theL frequencies specified in FREQ. If
SpecifyPolarizationPattern is set to true, RESP is a MATLAB struct containing
two fields, RESP.H and RESP .V, representing the antenna's response in horizontal and
vertical polarization, respectively. Each field is an M-by-L matrix containing the antenna
response at the M angles specified in ANG and at theL frequencies specified in FREQ.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Antenna element object.

1-457

1 Alphabetical List

1-458

FREQ

Operating frequencies of antenna in hertz. FREQ is a row vector of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must be between —180 and 180 degrees,
inclusive. The elevation angle must be between —90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

Output Arguments

RESP

Voltage response of antenna element. The output depends on whether the antenna
element supports polarization or not.

+ If the antenna element does not support polarization, RESP is an M-by-L matrix. In
this matrix, M represents the number of angles specified in ANG while L represents
the number of frequencies specified in FREQ.

+ If the antenna element supports polarization, RESP is a MATLAB struct with fields
RESP.H and RESP.V containing responses for the horizontal and vertical polarization
components of the antenna radiation pattern. RESP.H and RESP.V are M-by-L
matrices. In these matrices, M represents the number of angles specified in ANG
while L represents the number of frequencies specified in FREQ.

Examples

Construct a user defined antenna with an omnidirectional response in azimuth and a
cosine pattern in elevation. The antenna operates at 1 GHz. Find the response of the
antenna at the boresight.

ha = phased.CustomAntennaElement;
ha.AzimuthAngles = -180:180;

step

ha.ElevationAngles = -90:90;

ha.RadiationPattern = mag2db(repmat(cosd(ha.ElevationAngles)”, ...
1,numel (ha.AzimuthAngles)));

resp = step(ha,1e9,[0; 0]);

resp =

Algorithms

The total response of a custom antenna element is a combination of its frequency
response and spatial response. phased.CustomAntennaElement calculates both
responses using nearest neighbor interpolation, and then multiplies the responses to
form the total response.

See Also

phitheta2azel | uv2azel

1-459

1 Alphabetical List

1-460

phased.CustomMicrophoneElement System object

Package: phased

Custom microphone

Description
The CustomMicrophoneElement object creates a custom microphone element.

To compute the response of the microphone element for specified directions:

1 Define and set up your custom microphone element. See “Construction” on page
1-460.

2 Call step to compute the response according to the properties of
phased.CustomMicrophoneElement. The behavior of step is specific to each
object in the toolbox.

Construction

H = phased.CustomMicrophoneElement creates a custom microphone system object,
H, that models a custom microphone element.

H = phased.CustomMicrophoneElement(Name,Value) creates a custom
microphone object, H, with each specified property set to the specified value.
You can specify additional name-value pair arguments in any order as
(Namel,Valuel,...,NameN,ValueN).

Properties

FrequencyVector
Operating frequency vector

Specify the frequencies in hertz where the frequency responses of element are measured
as a vector. The elements of the vector must be increasing. The microphone element has
no response outside the specified frequency range.

phased.CustomMicrophoneElement System object

Default: [0 1e20]
FrequencyResponse
Frequency responses

Specify the frequency responses in decibels measured at the frequencies defined in the
FrequencyVector property as a row vector. The length of the vector must equal the
length of the frequency vector specified in the FrequencyVector property.

Default: [0 0]
PolarPatternFrequencies
Polar pattern measuring frequencies

Specify the measuring frequencies in hertz of the polar patterns as a row vector of length
M. The measuring frequencies must be within the frequency range specified in the
FrequencyVector property.

Default: 1e3
PolarPatternAngles
Polar pattern measuring angles

Specify the measuring angles in degrees of the polar patterns as a row vector of length
N. The angles are measured from the central pickup axis of the microphone, and must be
between —180 and 180, inclusive.

Default: [-180:180]
PolarPattern
Polar pattern

Specify the polar patterns of the microphone element as an M-by-N matrix. M is the
number of measuring frequencies specified in the PolarPatternFrequencies property.
N is the number of measuring angles specified in the PolarPatternAngles property.
Each row of the matrix represents the magnitude of the polar pattern (in decibels)
measured at the corresponding frequency specified in the PolarPatternFrequencies
property and corresponding angles specified in the PolarPatternAngles property. The

1-461

1 Alphabetical List

1-462

pattern is assumed to be measured in the azimuth plane where the elevation angle is
0 and where the central pickup axis is assumed to be 0 degrees azimuth and 0 degrees
elevation. The polar pattern is assumed to be symmetric around the central axis and
therefore the microphone’s response pattern in 3-D space can be constructed from the

polar pattern.

Default: An omnidirectional pattern with 0 dB response everywhere

Methods

clone

directivity
getNumlInputs
getNumOutputs

isLocked

isPolarizationCapable

pattern
patternAzimuth
patternElevation

plotResponse

Create omnidirectional microphone object
with same property values

Directivity of custom microphone element
Number of expected inputs to step method
Number of outputs from step method

Locked status for input attributes and
nontunable properties

Polarization capability

Plot custom microphone element directivity
and patterns

Plot custom microphone element directivity
or pattern versus azimuth

Plot custom microphone element directivity
or pattern versus elevation

Plot response pattern of microphone

phased.CustomMicrophoneElement System object

release
Allow property value and input
characteristics changes
step
Output response of microphone
Examples

Create a custom Cardioid microphone, and calculate that microphone’s response at
response at 500, 1500, and 2000 Hz in the directions [0;0] and [40;50].

h = phased.CustomMicrophoneElement;

h_PolarPatternFrequencies = [500 1000];

h_PolarPattern = mag2db([---
0.5+0.5*cosd(h.PolarPatternAngles);...
0.6+0.4*cosd(h.PolarPatternAngles)]);

resp = step(h,[500 1500 2000],[0 0;40 50]1");

plotResponse(h,500, "RespCut”, "Az", "Format”, "Polar™);

1-463

1 Alphabetical List

1-464

Figure 1 =N =R

File Edit View Inset Tools Desktop Window Help o

NEES | b RRTDEL- D 0E) =D

Azimuth Cut (elevation angle = U_Ua}

MNormalized Power (dB)

Mormalized Power (dB), Broadside at 0.00 degrees

Algorithms

The total response of a custom microphone element is a combination of its frequency
response and spatial response. phased.CustomMicrophoneElement calculates both
responses using nearest neighbor interpolation and then multiplies them to form the
total response. When the PolarPatternFrequencies property value is nonscalar, the

phased.CustomMicrophoneElement System object

object specifies multiple polar patterns. In this case, the interpolation uses the polar
pattern that is measured closest to the specified frequency.

See Also

phased.ConformalArray | phased.OmnidirectionalMicrophoneElement |
phased.ULA | phased.URA | phitheta2azel | uv2azel

1-465

1 Alphabetical List

clone

System object: phased.CustomMicrophoneElement
Package: phased

Create omnidirectional microphone object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1-466

directivity

directivity
System object: phased.CustomMicrophoneElement

Package: phased

Directivity of custom microphone element

Syntax

D = directivity(H,FREQ,ANGLE)

Description

D = directivity(H,FREQ,ANGLE) returns the “Directivity (dBi)” on page 1-469 of a
custom microphone element, H, at frequencies specified by FREQ and in direction angles
specified by ANGLE.

Input Arguments

H — Custom microphone element
System object

Custom microphone element specified as a phased.CustomMicrophoneElement
System object.
Example: H = phased.CustomMicrophoneElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

* For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is

1-467

1 Alphabetical List

1-468

returned as —Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement,
which use the FrequencyVector property.

+ For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as —InF.

Example: [1e8 2e8]
Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-
by-M real-valued matrix, where M is the number of angular directions. Angle units
are in degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in
azimuth and elevation, [az;el]. The azimuth angle must lie between —180° and 180°.
The elevation angle must lie between —90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis.

Example: [45 60; O 10]
Data Types: double

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix whose columns contain the directivities at the
M angles specified by ANGLE. Each column corresponds to one of the L frequency values
specified in FREQ. Directivity units are in dBi.

directivity

Definitions

Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element

or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

Urad (6> (P)

D=4rn
P total

where U,,q(0,9) is the radiant intensity of a transmitter in the direction (6,¢) and Pia
1s the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Directivity of Custom Microphone Element

Compute the directivity of a custom microphone element. Create a custom cardioid
microphone, and plot the microphone's response at 700 Hz for elevations between -90 and
+90 degrees.

1-469

1 Alphabetical List

1-470

Define the pattern for the custom microphone element. The System object's
PolarPatternAngles property has default value of [-180:180] degrees.

myAnt = phased.CustomMicrophoneElement;

myAnt.PolarPatternFrequencies = [500 1000];

myAnt.PolarPattern = mag2db([.--.
0.5+0.5*cosd(myAnt.PolarPatternAngles);...
0.6+0.4*cosd(myAnt.PolarPatternAngles)]);

Calculate the directivity as a function of elevation at zero degrees azimuth.

elev = [-90:5:90];

azm zeros(size(elev));

ang [azm;elev];

freq = 700;

d = directivity(myAnt,freq,ang);
plot(elev,d)

xlabel ("Elevation (deg)®)

ylabel ("Directivity (dBi)")

directivity

Directivity (dBi)

i
T

(%]
T

]
T

_2 1 1 1 1 1 1 1 1

-100 80 -60 -40 -20 0 20 40 60
Elevation (deg)

The directivity is maximum at " elevation.

See Also

phased.CustomAntennaElement.plotResponse

80 100

1-471

1 Alphabetical List

getNumlinputs

System object: phased.CustomMicrophoneElement
Package: phased

Number of expected inputs to step method

Syntax

N = getNumlnputs(H)

Description

N = getNumlnputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) you must use when calling the step method. This value
changes when you alter properties that turn inputs on or off.

1-472

getNumOutputs

getNumOutputs

System object: phased.CustomMicrophoneElement
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)
Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1-473

1 Alphabetical List

1-474

isLocked

System object: phased.CustomMicrophoneElement
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF of the CustomMicrophoneElement
System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

isPolarizationCapable

isPolarizationCapable

System object: phased.CustomMicrophoneElement
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description
flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating
whether the phased.CustomMicrophoneElement supports polarization. An element

supports polarization if it can create or respond to polarized fields. This microphone
element, as with all microphone elements, does not support polarization.

Input Arguments

h — Custom microphone element

Custom microphone element specified as a phased.CustomMicrophoneElement
System object.

Output Arguments

flag — Polarization-capability flag

Polarization-capability returned as a Boolean value true if the microphone
element supports polarization or false if it does not. Because the

phased.CustomMicrophoneElement object does not support polarization, flag is
always returned as False.

1-475

1 Alphabetical List

Examples

Custom Microphone Element does not Support Polarization

Show that the phased.CustomMicrophoneElement microphone element does not
support polarization.

h = phased.CustomMicrophoneElement;
isPolarizationCapable(h)

ans =
0

The returned value false (0) shows that the custom microphone element does not
support polarization.

1-476

pattern

pattern

System object: phased.CustomMicrophoneElement
Package: phased

Plot custom microphone element directivity and patterns

Syntax

pattern(sElem, FREQ)
pattern(sElem,FREQ,AZ)
pattern(sElem,FREQ,AZ,EL)

pattern(,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern(_)

Description

pattern(skElem, FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sElem. The operating frequency is specified in FREQ.

pattern(sElem,FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sElem,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(,Name,Value) plots the array pattern with additional options specified
by one or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern(___) returns the array pattern in PAT. The
AZ_ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT.
If the "CoordinateSystem” parameter is set to "uv”, then AZ_ANG contains the

U coordinates of the pattern and EL_ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

1-477

1 Alphabetical List

1-478

Note: This method replaces the previous plotResponse method. To replace plots using
plotResponse plots with equivalent plots using pattern, see “Convert plotResponse to
pattern” on page 1-1674

Input Arguments

sElem — Custom microphone element
System object

Custom microphone element, specified as a phased.CustomMicrophoneElement
System object.

Example: sElem = phased.CustomMicrophoneElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-
by-L real-valued row vector. Frequency units are in hertz.

+ For an antenna or microphone element, FREQ must lie within the range of
values specified by the FrequencyRange or FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as —InF. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement,
which use the FrequencyVector property.

* For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as —Inf.

Example: [1e8 2e8]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-M real-
valued row vector where M is the number of azimuth angles. Angle units are in degrees.
Azimuth angles must lie between —180° and 180°.

pattern

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.

Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued
row vector where NN is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between —90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. When
measured towards the z-axis, this angle is positive.

Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"CoordinateSystem”™ — Plotting coordinate system
"polar” (default) | "rectangular® | "uv®

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of "CoordinateSystem” and one of "polar”, "rectangular”, or
"uv”. When "CoordinateSystem” is set to "polar” or "rectangular”, the
AZ and EL arguments specify the pattern azimuth and elevation, respectively. AZ
values must lie between —180° and 180°. EL values must lie between —90° and 90°.
If "CoordinateSystem” is set to "uv™, AZ and EL specify U and U coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: "uv”

Data Types: char

1-479

1 Alphabetical List

1-480

"Type" — Displayed pattern type
"directivity” (default) | "efield” | "power

powerdb*®

Displayed pattern type, specified as the comma-separated pair consisting of "Type" and
one of
* "directivity™ — directivity pattern measured in dBi.

+ "efield™ — field pattern of the sensor or array. For acoustic sensors, the displayed
pattern is for the scalar sound field.

+ "power" — power pattern of the sensor or array defined as the square of the field
pattern.

+ "powerdb® — power pattern converted to dB.
Example: "powerdb*®
Data Types: char

"Normalize" — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
"Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
When you set "Type” to "directivity”, this parameter does not apply. Directivity
patterns are already normalized.

Example:
Data Types: logical

"PlotStyle" — Plotting style
"overlay” (default) | "waterfall*

Plotting style, specified as the comma-separated pair consisting of "Plotstyle”

and either "overlay” or "waterfall". This parameter applies when you specify
multiple frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the
arguments AZ or EL to a scalar.

Example:

Data Types: char

pattern

Output Arguments

PAT — Element pattern
M-by-N real-valued matrix

Element pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-M real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-
by-M real-valued row vector corresponding to the dimension set in AZ. The rows of PAT
correspond to the values in AZ_ANG.

EL_ANG — Elevation angles
scalar | 1-by-N real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-IV
real-valued row vector corresponding to the dimension set in EL. The columns of PAT
correspond to the values in EL._ANG.

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element

or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

Urad (97 90)

D=4rn
Ptotal

where U,,q(8,9) is the radiant intensity of a transmitter in the direction (8,¢) and Piya
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.

1-481

1 Alphabetical List

When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw
2-D azimuth and elevation pattern plots. These methods are azimuthPattern and

elevationPattern.

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL, "Namel~”, "Valuel®, ..., "NameN~, "ValueN®)

plotResponse Inputs

plotResponse Description

pattern Inputs

H argument

Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument

Operating frequency.

FREQ argument (no change)

V argument

Propagation speed. This
argument is used only for
arrays.

"PropagationSpeed” name-
value pair. This parameter is
only used for arrays.

"Format” and "RespCut
name-value pairs

1-482

These options work together to
let you create a plot in angle
space (line or polar style) or
UV space. They also determine
whether the plot is 2-D or 3-
D. This table shows you how to

"CoordinateSystem®” name-
value pair used together with
the AZ and EL input arguments.

"CoordinateSystem” has
the same options as the

pattern

plotResponse Inputs

plotResponse Description pattern Inputs
create different types of plots plotResponse method
using plotResponse. "Format"name-value pair,
except that "1ine” is now
Display space named "rectangular”. The
Angle space Set ta}ble shows how to create.
(D) "RespCut” different types of plots using
to "Az" or |Ppattern.
"El". Set .
"Format" to ||| Pisplay space
"line” or Angle space Set
"polar-. (2D) "Coordinate
System*® to
Set the display "rectangular
axis using or " po lar".
either the Specify either
the AZ or EL as a
"AzimuthAngl scalar.
?]I;IevationAnc Angle space ?et i
name-value (3D) Coord : nate
i, System*® to
"rectangular
Angle space Set or "polar-.
(3D) "RespCut” Specify both
to "3D". Set AZ and EL as
"Format” to vectors.
o line 'or UV space (2D) |Set
polar-. - ;
Coordinate
Set the display System” to
axis using "uv®. Use AZ
both the to specify a U-
*AzimuthAngl space vector.
and"Elevatioy Use EL to
name-value specify a V-
pairs. space scalar.
UV space (2D) |Set UV space (3D) |Set
"RespCut” "Coordinate
System*® to

1-483

1 Alphabetical List

plotResponse Inputs

plotResponse Description

pattern Inputs

the display
range using
the "UGrid*
name-value
pair.

Set
"RespCut”
to"3D". Set
"Format” to
"UV*®. Set the
display range
using both
the "UGrid*®
and "VGrid"
name-value
pairs.

UV space (3D)

Display space Display space
to"U*®. Set "uv®. Use AZ
"Format*” to specify a U-
to "UV". Set space vector.

Use EL to
specify a V-
space vector.

If you set CoordinateSystem
to "uv®, enter the UV grid
values using AZ and EL.

"CutAngle® name-value pair

Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
"RespCut” is set to "Az" or
"EIl", use "CutAngle” to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either AZ
or EL as a scalar, not a vector.

"Normal izeResponse” name-
value pair

Normalizes the plot.
When “"Unit” is set to
"dbi ", you cannot specify
"Normal izeResponse”.

"Normalize®™ name-value
pair. When "Type” is set to
"directivity”,

you cannot specify
*Normalize®.

1-484

pattern

plotResponse Inputs

plotResponse Description

pattern Inputs

"OverlayFreq" name-value
pair

Plot multiple frequencies on
the same 2-D plot. Available
only when "Format”® is

set to "line” or "uv™ and
"RespCut” is not set to "3D".
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

"PlotStyle” name-value pair
plots multiple frequencies on the
same 2-D plot.

The values "overlay® and
"waterfall " correspond to
"OverlayFreq"® values of
true and false. The option
"waterfall” is allowed only
when "CoordinateSystem® is
set to "rectangular”® or "uv”.

"Polarization” name-value
pair

Determines how to plot
polarized fields. Options are
"None"®, "Combined®, "H", or
"vE.

"Polarization” name-value
pair determines how to plot
polarized fields. The "None*
option is removed. The options
"Combined”®, "H", or "V" are
unchanged.

"Unit" name-value pair

Determines the plot units.
Choose "db*", "mag”, "pow",
or "dbi ", where the default is
"db".

"Type" name-value pair, uses
equivalent options with different
names

plotResponse pattern

“db* “powerdb*
"mag " "efield"”
"pow* "power "

"dbi* "directivity”

"Weights" name-value pair

Array element tapers (or
weights).

"Weights" name-value pair (no
change).

"AzimuthAngles”™ name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

"ElevationAngles®™ name-
value pair

Elevation angles used to
display the antenna or array
response.

EL argument

1-485

1 Alphabetical List

plotResponse Inputs

plotResponse Description

pattern Inputs

"UGrid" name-value pair

Contains U coordinates in UV-
space.

AZ argument when
"CoordinateSystem® name-
value pair is set to "uv”

"VGrid" name-value pair

Contains V-coordinates in UV-
space.

EL argument when
"CoordinateSystem” name-
value pair is set to "uv"”

Examples

Azimuth Power Pattern and Directivity of Cardioid Microphone

Design a cardioid microphone to operate in the frequency range between 500 and 1000

Hz.

sCustMike = phased.CustomMicrophoneElement;

sCustMike .PolarPatternFrequencies = [500 1000];

sCustMike .PolarPattern = mag2db([.- - -
0.5+0.5*cosd(sCustMike.PolarPatternAngles);. ..
0.6+0.4*cosd(sCustMike.PolarPatternAngles)]);

Display a polar plot of an azimuth cut of the response at 500 Hz and 1000 Hz.

fc = 500;

pattern(sCustMike, [fc 2*fc],[-180:180],0,---
"CoordinateSystem®, "polar”, ...
"Type®, "powerdb®);

1-486

pattern

Mormalized Power (dB)

Azimuth Cut (elevation angle = 0.0°)

0.5 kHz
1.0 kHz

Mormalized Power (dB), Broadside at 0.00 degrees

Plot the directivity as a line plot for the same two frequencies.

pattern(sCustMike, [fc 2*fc],[-180:180],0,-.--
"CoordinateSystem”, "rectangular”, ...
"Type®, "directivity”);

1-487

1 Alphabetical List

Directivity (dBi)

1-488

Azimuth Cut (elevation angle = 0.0°)

ok i 0.5 kHz
N 1.0 kHz

=200 -100 0 100 200
Azimuth Angle (degrees)

Power Pattern of Cardioid Microphone in U/V Space

Plot a it-cut of the power pattern of a custom cardioid microphone designed to operate in
the frequency range 500-1000 Hz.

Create a cardioid microphone.

sCustMike = phased.CustomMicrophoneElement;

sCustMike.PolarPatternFrequencies = [500 1000];

sCustMike.PolarPattern = mag2db([.-.-
0.5+0.5*cosd(sCustMike.PolarPatternAngles);...
0.6+0.4*cosd(sCustMike.PolarPatternAngles)]);

Plot the power pattern.

pattern

fc = 500;

pattern(sCustMike,fc,[-1:.01: 1]
"CoordinateSystem”, “"uv”®, ..
"Type*©, "powerdb®);

Response in U Space

i
=
T
I
#
#

P
T
-
P
1

f"'f.

MNormalized Power (dB)

L
L
I

I I I 1 I I I n
-1 08 08 04 02 0 02 0.4

0.6 08 1
u

3-D Pattern of Cardioid Microphone Over Restricted Range of Angles

Plot the 3-D magnitude pattern of a custom cardioid microphone with both the azimuth
and elevation angles restricted to the range -40 to 40 degrees in 0.1 degree increments

Create a custom microphone element with a cardioid pattern

sCustMike = phased.CustomMicrophoneElement
sCustMike.PolarPatternFrequencies =

i = [500 1000];
sCustMike.PolarPattern = mag2db([

1-489

1 Alphabetical List

0.5+0.5*cosd(sCustMike.PolarPatternAngles);. ..
0.6+0.4*cosd(sCustMike.PolarPatternAngles)]);

Plot the 3-D magnitude pattern.

fc = 500;
pattern(sCustMike,fc,[-40:0.1:40],[-40:0.1:40], - -.
“CoordinateSystem®, "polar®, ...
"Type", "efield");

3D Response Pattern

y
Az 90
X
EID
Az O
El 0
See Also

phased.CustomMicrophoneElement._patternAzimuth |
phased.CustomMicrophoneElement.patternElevation

1-490

0.08

0.94

0.94

0.82

0.9

0.88

0.86

0.84

0.82

0.5

MNormalized Magnitude

pattern

Introduced in R2015a

1-491

1 Alphabetical List

1-492

patternAzimuth

System object: phased.CustomMicrophoneElement
Package: phased

Plot custom microphone element directivity or pattern versus azimuth

Syntax

patternAzimuth(sElem, FREQ)
patternAzimuth(sElem, FREQ,EL)
patternAzimuth(sElem,FREQ,EL ,Name,Value)
PAT = patternAzimuth(__)

Description

patternAzimuth(sElem, FREQ) plots the 2-D element directivity pattern versus
azimuth (in dBi) for the element sElem at zero degrees elevation angle. The argument
FREQ specifies the operating frequency.

patternAzimuth(sElem,FREQ,EL), in addition, plots the 2-D element directivity
pattern versus azimuth (in dBi) at the elevation angle specified by EL. When EL is a
vector, multiple overlaid plots are created.

patternAzimuth(sElem,FREQ,EL,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth() returns the element pattern. PAT is a matrix

whose entries represent the pattern at corresponding sampling points specified by the
"Azimuth® parameter and the EL input argument.

Input Arguments

sElem — Custom microphone element
System object

patternAzimuth

Custom microphone element, specified as a phased.CustomMicrophoneElement
System object.

Example: sElem = phased.CustomMicrophoneElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

* For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as —InF. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement,
which use the FrequencyVector property.

* For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as —Inf.

Example: 1e8

Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing array directivity and pattern, specified as a 1-by-N real-
valued row vector, where N is the number of requested elevation directions. Angle units
are in degrees. The elevation angle must lie between —90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.

Example: [0,10,20]
Data Types: double
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1-493

1 Alphabetical List

quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"Type" — Displayed pattern type
"directivity” (default) | "efield” | "power

powerdb*®

Displayed pattern type, specified as the comma-separated pair consisting of "Type" and
one of
+ "directivity™ — directivity pattern measured in dBi.

+ "efield"™ — field pattern of the sensor or array. For acoustic sensors, the displayed
pattern is for the scalar sound field.

+ "power " — power pattern of the sensor or array defined as the square of the field
pattern.

* "powerdb® — power pattern converted to dB.
Example: "powerdb*®
Data Types: char

"Azimuth" — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of "Azimuth® and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: "Azimuth®,[-90:2:90]

Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of azimuth values determined by the "Azimuth® name-value pair
argument. The dimension N is the number of elevation angles, as determined by the EL
input argument.

1-494

patternAzimuth

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element

or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

Urad (9, §0)

D=4rn
Ptotal

where U,,q(0,9) is the radiant intensity of a transmitter in the direction (6,p) and Py
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Azimuth Pattern of Cardioid Microphone Over Reduced Angular Range

Plot the azimuth directivity pattern of a custom cardioid microphone at both 0 and 30
degrees elevation.

Create a custom microphone element with a cardioid pattern.

1-495

1 Alphabetical List

sCustMike = phased.CustomMicrophoneElement;

sCustMike._PolarPatternFrequencies = [500 1000];

sCustMike_PolarPattern = mag2db([---
0.5+0.5*cosd(sCustMike.PolarPatternAngles) ;...
0.6+0.4*cosd(sCustMike.PolarPatternAngles)]);

Plot the directivity at 500 Hz.

fc = 500;
patternAzimuth(sCustMike,fc,[0 30])

Azimuth Cut (frequency = 500 Hz)

0.0 deg elevation
30.0 deg elevation

Directivity (dBi)

Directivity (dBi), Broadside at 0.00 degrees

Plot the directivity for a reduced range of azimuth angles using the Azimuth parameter.
Notice the change in scale.

fc = 500;

1-496

patternAzimuth

Directivity (dBi)

patternAzimuth(sCustMike,fc,[0 30],--.
"Azimuth®,[-40:.1:40])

Azimuth Cut (frequency = 500 Hz)
90

0.0 deg elevation
30.0 deg elevation

150

“‘ AN
%

180

-150 -30

-120 =60
-890

Directivity (dBi), Broadside at 0.00 degrees

See Also

phased.CustomMicrophoneElement.pattern |
phased.CustomMicrophoneElement._patternElevation

Introduced in R2015a

1-497

1 Alphabetical List

1-498

patternElevation

System object: phased.CustomMicrophoneElement
Package: phased

Plot custom microphone element directivity or pattern versus elevation

Syntax

patternElevation(sElem, FREQ)
patternElevation(sElem,FREQ,AZ)
patternElevation(skElem,FREQ,AZ,Name,Value)
PAT = patternElevation(__)

Description

patternElevation(sElem,FREQ) plots the 2-D element directivity pattern versus
elevation (in dBi) for the element sElem at zero degrees azimuth angle. The argument
FREQ specifies the operating frequency.

patternElevation(skElem,FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(skElem,FREQ,AZ,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation() returns the element pattern. PAT is a matrix
whose entries represent the pattern at corresponding sampling points specified by the
"Elevation” parameter and the AZ input argument.

Input Arguments

sElem — Custom microphone element
System object

Custom microphone element, specified as a phased.CustomMicrophoneElement
System object.

patternElevation

Example: sElem = phased.CustomMicrophoneElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

* For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the
element. Otherwise, the element produces no response and the directivity is
returned as —Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement,
which use the FrequencyVector property.

+ For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the
directivity is returned as —Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing array directivity and pattern, specified as a 1-by-M real-
valued row vector where N is the number of desired azimuth directions. Angle units are
in degrees. The azimuth angle must lie between —180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.

Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1-499

1 Alphabetical List

1-500

quotes (* 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"Type" — Displayed pattern type
"directivity” (default) | "efield” | "power

powerdb*®

Displayed pattern type, specified as the comma-separated pair consisting of "Type" and
one of
+ "directivity" — directivity pattern measured in dBi.

+ "efield” — field pattern of the sensor or array. For acoustic sensors, the displayed
pattern is for the scalar sound field.

+ "power® — power pattern of the sensor or array defined as the square of the field
pattern.

* "powerdb® — power pattern converted to dB.
Example: "powerdb*®
Data Types: char

"Elevation” — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of "Elevation*®
and a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.

Example: "Elevation”,[-90:2:90]
Data Types: double

Output Arguments

PAT — Element directivity or pattern
L-by-N real-valued matrix

Element directivity or pattern, returned as an L-by-N real-valued matrix. The dimension
L is the number of elevation angles determined by the "Elevation” name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

patternElevation

Definitions

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element

or array of sensor elements. Higher directivity is desired when you want to transmit
more radiation in a specific direction. Directivity is the ratio of the transmitted radiant
intensity in a specified direction to the radiant intensity transmitted by an isotropic
radiator with the same total transmitted power

Urad (9, §0)

D=4rn
Ptotal

where U,,q(0,9) is the radiant intensity of a transmitter in the direction (6,p) and Py
is the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission.
When converted to decibels, the directivity is denoted as dBi. For information on
directivity, read the notes on “Element directivity” and “Array directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity
over all directions in space to obtain the total transmitted power. There is a difference
between how that integration is performed when Antenna Toolbox antennas are used
in a phased array and when Phased Array System Toolbox antennas are used. When
an array contains Antenna Toolbox antennas, the directivity computation is performed
using a triangular mesh created from 500 regularly spaced points over a sphere. For
Phased Array System Toolbox antennas, the integration uses a uniform rectangular
mesh of points spaced 1° apart in azimuth and elevation over a sphere. There may be
significant differences in computed directivity, especially for large arrays.

Examples

Elevation Pattern of Cardioid Microphone Over Reduced Angular Range

Plot the elevation directivity pattern of a custom cardioid microphone at both 0 and 45
degrees azimuth.

Create a custom microphone element with a cardioid pattern.

1-501

1 Alphabetical List

sCustMike = phased.CustomMicrophoneElement;

sCustMike._PolarPatternFrequencies = [500 1000];

sCustMike_PolarPattern = mag2db([---
0.5+0.5*cosd(sCustMike.PolarPatternAngles) ;...
0.6+0.4*cosd(sCustMike.PolarPatternAngles)]);

Plot the directivity at 500 Hz.

fc = 500;
patternElevation(sCustMike,fc,[0 30])

Elevation Cut (frequency = 500 Hz)

0.0 deg azimuth
120 30.0 deg azimuth
150 "'

@]

) i.

= 1

= 180 i

T i

o .

3

-120

Directivity (dBi), Broadside at 0.00 degrees

Plot the directivity for a reduced range of azimuth angles using the Azimuth parameter.
Notice the change in scale.

fc = 500;

1-502

patternElevation

Directivity (dBi)

patternElevation(sCustMike,fc,[0 45], ---
"Elevation”,[-40:.1:40])

Elevation Cut {frequency = 500 Hz)

0.0 deg azimuth
45.0 deg azimuth

Cad

5 &

' -
‘Q m

-120
Directivity (dBi), Broadside at 0.00 degrees

=90

See Also

phased.CustomMicrophoneElement.pattern

phased.CustomMicrophoneElement._patternAzimuth

Introduced in R2015a

1-503

1 Alphabetical List

1-504

plotResponse

System object: phased.CustomMicrophoneElement
Package: phased

Plot response pattern of microphone

Syntax

plotResponse(H, FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse()

Description

plotResponse(H, FREQ) plots the element response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response with additional
options specified by one or more Name,Value pair arguments.

hPlot = plotResponse() returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments

H
Element System object
FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row vector. FREQ must

lie within the range specified by the FrequencyVector property of H. If you set the
"RespCut” property of H to "3D", FREQ must be a scalar. When FREQ is a row vector,
plotResponse draws multiple frequency responses on the same axes.

plotResponse

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (" 7). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"CutAngle”

Cut angle specified as a scalar. This argument is applicable only when RespCut is "Az*
or "EN". If RespCut is "Az", CutAngle must be between —90 and 90. If RespCut is "EI ",
CutAngle must be between —180 and 180.

Default: O
"Format*”

Format of the plot, using one of "Line", "Polar”, or "UV". If you set Format to "UV",
FREQ must be a scalar.

Default: "Line"
"Normal izeResponse*

Set this value to true to normalize the response pattern. Set this value to False to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to "dbi *.

Default: true
"OverlayFreq*®

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false
to plot pattern cuts against frequency in a 3-D waterfall plot. If this value is False,
FREQ must be a vector with at least two entries.

This parameter applies only when Format is not "Polar® and RespCut is not "3D".
Default: true
"Polarization”

Specify the polarization options for plotting the antenna response pattern. The allowable
values are | "None® | "Combined”™ | "H" | "V" | where

1-505

1 Alphabetical List

* "None" specifies plotting a nonpolarized response pattern
+ "Combined*® specifies plotting a combined polarization response pattern
* "H" specifies plotting the horizontal polarization response pattern

* "V" gpecifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed value is "None". This
parameter is not applicable when you set the Unit parameter value to "dbi ".

Default: "None*
"RespCut”
Cut of the response. Valid values depend on Format, as follows:

+ If Formatis "Line" or "Polar”, the valid values of RespCut are "Az", "EI ", and
"3D". The default is "Az".

+ If Formatis "UV", the valid values of RespCut are "U" and "3D". The default is "U".
If you set RespCut to "3D", FREQ must be a scalar.
"Unit"

The unit of the plot. Valid values are "db™, "mag”, "pow", or "dbi ". This parameter
determines the type of plot that is produced.

Unit value Plot type

db power pattern in dB
scale

mag field pattern

pow power pattern

dbi directivity

Default: "db*
"AzimuthAngles*

Azimuth angles for plotting element response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles

1-506

plotResponse

for visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to "Az" or "3D" and the Format parameter is set to "Line" or
"Polar”. The values of azimuth angles should lie between —180° and 180° and must be
in nondecreasing order. When you set the RespCut parameter to *3D", you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]
"ElevationAngles~

Elevation angles for plotting element response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation

angles for visualizing the radiation pattern. This parameter is allowed only when the
RespCut parameter is set to "EI" or "3D" and the Format parameter is set to "Line*
or "Polar”. The values of elevation angles should lie between —90° and 90° and must be
in nondecreasing order. When you set the RespCut parameter to "3D", you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]
"UGrid-

U coordinate values for plotting element response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing

the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to "UV" and the RespCut parameter is set to "U" or "3D". The values of
UGrid should be between —1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]
"VGrid*®

V coordinate values for plotting element response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing

the radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to "UV" and the RespCut parameter is set to "3D". The values of VGrid
should be between —1 and 1 and should be specified in nondecreasing order. You can set
the VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

1-507

1 Alphabetical List

Examples

Azimuth Response and Directivity of Cardioid Microphone

Design a cardioid microphone to operate in the frequency range between 500 and 1000
Hz.

h = phased.CustomMicrophoneElement;

h_PolarPatternFrequencies = [500 1000];

h_PolarPattern = mag2db([---
0.5+0.5*cosd(h.PolarPatternAngles); ...
0.6+0.4*cosd(h.PolarPatternAngles)]);

Display a polar plot of an azimuth cut of the response at 500 Hz and 1000 Hz.

fc = 500;
plotResponse(h, [fc 2*fc], "RespCut”,"Az","Format”, "Polar”);

1-508

plotResponse

Mormalized Power (dB)

Azimuth Cut (elevation angle = 0.0°)

0.5 kHz
1.0 kHz

Mormalized Power (dB), Broadside at 0.00 degrees

Plot the directivity as a line plot for the same two frequencies.

plotResponse(h, [fc 2*fc], "RespCut”,"Az","Format”,"Line", "Unit", "dbi");

1-509

1 Alphabetical List

Azimuth Cut (elevation angle = 0.0°)

ok i 0.5 kHz
N 1.0 kHz

Directivity (dBi)

=200 -100 0 100 200
Azimuth Angle (degrees)

Response of Cardioid Microphone in U/V Space

Plot a w-cut of the response of a custom cardioid microphone that is designed to operate
in the frequency range 500-1000 Hz.

Create a cardioid microphone.

h = phased.CustomMicrophoneElement;
h.PolarPatternFrequencies = [500 1000];
h.PolarPattern = mag2db([.---

0.5+0.5*cosd(h.PolarPatternAngles);...
0.6+0.4*cosd(h.PolarPatternAngles)]);

Plot the response.

1-510

plotResponse

fc = 500;
plotResponse(h, fc, "Format®,"UV*");

Response in U Space
T T T T T T T T T
0r e 7
g L
ak P .]
—_ hS
= / \.
= I'I \‘x
u_ |'III \
- ! I"'.
ﬁ) III
£ f \
[=] | |
= 4 1]
| |
| |
| |
| |
-5 4
-’EI' = 1 I I I I 1 I I I
-1 0.8 06 04 0.2 0

02 0.4 0.6 0.8
U

3-D Response of Cardioid Microphone Over Restricted Range of Angles

Plot the 3-D response of a custom cardioid microphone in space but with both the
azimuth and elevation angles restricted to the range -40 to 40 degrees in 0.1 degree
increments.

Create a custom microphone element with a cardioid pattern.

h = phased.CustomMicrophoneElement;
h_PolarPatternFrequencies

= [500 1000];
h_PolarPattern = mag2db([---

1-511

1 Alphabetical List

0.5+0.5*cosd(h.PolarPatternAngles); ...
0.6+0.4*cosd(h.PolarPatternAngles)]);

Plot the 3-D response.

fc = 500;

plotResponse(h, fc, "Format”®, "polar”, "RespCut”,"3D", ...

“Unit","mag”, "AzimuthAngles”,[-40:0.1:40], - - -
"ElevationAngles®,[-40:0.1:40]);

3D Response Pattern

ElIQ

Az 0
EIOQ

See Also

azel2uv | uv2azel

1-512

0.8

0.08

0.04

0.62

0.4

0.88

0.86

0.84

0.82

0.8

Normalized Magnitude

release

release

System object: phased.CustomMicrophoneElement
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1-513

1 Alphabetical List

1-514

step

System object: phased.CustomMicrophoneElement
Package: phased

Output response of microphone

Syntax

RESP = step(H,FREQ,ANG)

Description

RESP = step(H,FREQ,ANG) returns the microphone’s magnitude response, RESP, at
frequencies specified in FREQ and directions specified in ANG.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H
Microphone object.

FREQ

Frequencies in hertz. FREQ is a row vector of length L.
ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

step

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must be between —180 and 180 degrees,
inclusive. The elevation angle must be between —90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

Output Arguments

RESP

Response of microphone. RESP is an M-by-L matrix that contains the responses of the
microphone element at the M angles specified in ANG and the L frequencies specified in
FREQ.

Examples

Construct a custom cardioid microphone with an operating frequency of 500 Hz. Find the
microphone response in the directions of [0;0] and [40;50].

h = phased.CustomMicrophoneElement;
h_PolarPatternFrequencies = [500 1000];
h.PolarPattern = mag2db([- - -
0.5+0.5*cosd(h.PolarPatternAngles); ...
0.6+0.4*cosd(h.PolarPatternAngles)]);
500; ang = [0 0;40 50]°";

= step(h,fc,ang);

fc =
resp

Algorithms

The total response of a custom microphone element is a combination of its frequency
response and spatial response. phased.CustomMicrophoneElement calculates both
responses using nearest neighbor interpolation and then multiplies them to form the
total response. When the PolarPatternFrequencies property value is nonscalar, the
object specifies multiple polar patterns. In this case, the interpolation uses the polar
pattern that is measured closest to the specified frequency.

1-515

1 Alphabetical List

See Also

phitheta2azel | uv2azel

1-516

phased. DPCACanceller System object

phased.DPCACanceller System object

Package: phased

Displaced phase center array (DPCA) pulse canceller

Description
The DPCACancel ler object implements a displaced phase center array pulse canceller.

To compute the output signal of the space time pulse canceller:

1 Define and set up your DPCA pulse canceller. See “Construction” on page 1-517.

2 Call step to execute the DPCA algorithm according to the properties of
phased.DPCACancel ler. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.DPCACancel ler creates a displaced phase center array (DPCA) canceller
System object, H. The object performs two-pulse DPCA processing on the input data.

H = phased.DPCACanceller(Name,Value) creates a DPCA object, H, with each
specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Namel,Valuel,...,NameN,ValueN).

Properties

SensorArray
Handle to sensor array

Specify the sensor array as a handle. The sensor array must be an array object in the
phased package. The array cannot contain subarrays.

Default: phased.ULA with default property values

1-517

1 Alphabetical List

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.
Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (PRF) of the received signal in hertz as a scalar.
Default: 1

DirectionSource

Source of receiving mainlobe direction

Specify whether the targeting direction for the STAP processor comes from the Direction
property of this object or from an input argument in step. Values of this property are:

"Property* The Direction property of this object specifies the targeting
direction.

"Input port* An input argument in each invocation of step specifies the
targeting direction.

1-518

Default: "Property”
Direction

Receiving mainlobe direction

phased. DPCACanceller System object

Specify the receiving mainlobe direction of the receiving sensor array as

a column vector of length 2. The direction is specified in the format of
[AzimuthAngle;ElevationAngle] (in degrees). The azimuth angle should be between
—180 and 180. The elevation angle should be between —90 and 90. This property applies
when you set the DirectionSource property to "Property”~.

Default: [0; 0]
DopplerSource
Source of targeting Doppler

Specify whether the targeting Doppler for the STAP processor comes from the Doppler
property of this object or from an input argument in step. Values of this property are:

"Property" The Doppler property of this object specifies the Doppler.
"Input port- An input argument in each invocation of step specifies the
Doppler.

Default: "Property*
Doppler
Targeting Doppler frequency (hertz)

Specify the targeting Doppler of the STAP processor as a scalar. This property applies
when you set the DopplerSource property to "Property”.

Default: O
WeightsOutputPort
Output processing weights

To obtain the weights used in the STAP processor, set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the
weights, set this property to false.

Default: false
PreDopplerOutput

Output pre-Doppler result

1-519

1 Alphabetical List

1-520

Set this property to true to output the processing result before applying the Doppler
filtering. Set this property to False to output the processing result after the Doppler
filtering.

Default: false

Methods

clone
Create DPCA object with same property
values
getNumlInputs
Number of expected inputs to step method
getNumOutputs
Number of outputs from step method
isLocked
Locked status for input attributes and
nontunable properties
release
Allow property value and input
characteristics changes
step
Perform DPCA processing on input data
Examples

Process the data cube using a DPCA processor. The weights are calculated for the 71st
cell of a collected data cube. The look direction is [0; O] degrees and the Doppler is 12980
Hz.

load STAPExampleData; % load data

Hs = phased.DPCACanceller("SensorArray”,STAPEX_HArray, . - .
"PRF" ,STAPEX_PRF, . ..
"PropagationSpeed”,STAPEx_PropagationSpeed, - ..
"OperatingFrequency”,STAPEx_OperatingFrequency, - ..
"WeightsOutputPort” ,true, . ..

phased. DPCACanceller System object

"DirectionSource”, " Input port®, ...
"DopplerSource”, "Input port*®);
[y.w] = step(Hs,STAPEx_ReceivePulse,71,[0; 0],12980);
Hresp = phased.AngleDopplerResponse(...
"SensorArray” ,Hs.SensorArray, . ..
"OperatingFrequency” ,Hs.OperatingFrequency, . . .
"PRF",Hs.PRF, . ..
"PropagationSpeed” ,Hs_PropagationSpeed) ;
plotResponse(Hresp,w);

P

nﬁgurel
File Edit View Inset Tools Desktop Window Help

[=][E)

A I EEC A EE Y

< 10" Angle-Doppler Response Pattern

Doppler Frequency (Hz)

—[] 60 40 -20 0 20 40 60 a0
Angle (degrees)

30

20

-60

Power (dB)

1-521

1 Alphabetical List

References

[1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,”
Technical Report 1015, MIT Lincoln Laboratory, December, 1994.

See Also

phased.ADPCACanceller | phased.AngleDopplerResponse |
phased.STAPSMIBeamformer | phitheta2azel | uv2azel

1-522

clone

clone

System object: phased. DPCACanceller
Package: phased

Create DPCA object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H.

f H is locked, so is C.

1-523

1 Alphabetical List

getNumlinputs

System object: phased. DPCACanceller
Package: phased

Number of expected inputs to step method

Syntax

N = getNumlnputs(H)

Description

N = getNumlnputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) you must use when calling the step method. This value
changes when you alter properties that turn inputs on or off.

1-524

getNumOutputs

getNumOutputs

System object: phased. DPCACanceller
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)
Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1-525

1 Alphabetical List

1-526

isLocked

System object: phased. DPCACanceller
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the DPCACancel ler System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

release

release

System object: phased. DPCACanceller
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1-527

1 Alphabetical List

step

System object: phased. DPCACanceller
Package: phased

Perform DPCA processing on input data

Syntax

Y = step(H,X,CUTIDX)

Y = step(H,X,CUTIDX,ANG)
Y = step(_ ,DOP)

LY.W] = step(_)

Description

Y = step(H,X,CUTIDX) applies the DPCA pulse cancellation algorithm to the input
data X. The algorithm calculates the processing weights according to the range cell
specified by CUTIDX. This syntax is available when the DirectionSource property
is "Property” and the DopplerSource property is "Property”. The receiving
mainlobe direction is the Direction property value. The output Y contains the
result of pulse cancellation either before or after Doppler filtering, depending on the
PreDopplerOutput property value.

Y = step(H,X,CUTIDX,ANG) uses ANG as the receiving mainlobe direction. This
syntax is available when the DirectionSource property is " Input port” and the
DopplerSource property is "Property”.

Y = step(,DOP) uses DOP as the targeting Doppler frequency. This syntax is
available when the DopplerSource property is " Input port”.

[Y.,W] = step() returns the additional output, W, as the processing weights. This
syntax is available when the WeightsOutputPort property is true.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable

1-528

step

property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments
H

Pulse canceller object.

X

Input data. X must be a 3-dimensional M-by-N-by-P numeric array whose dimensions are
(range, channels, pulses).

CUTIDX
Range cell.
ANG

Receiving mainlobe direction. ANG must be a 2-by-1 vector in the form [AzimuthAngle;
ElevationAngle], in degrees. The azimuth angle must be between —180 and 180. The
elevation angle must be between —90 and 90.

Default: Direction property of H
DOP
Targeting Doppler frequency in hertz. DOP must be a scalar.

Default: Doppler property of H

Output Arguments

Y

Result of applying pulse cancelling to the input data. The meaning and dimensions of Y
depend on the PreDopplerOutput property of H:

1-529

1 Alphabetical List

1-530

+ If PreDopplerOutputis true, Y contains the pre-Doppler data. Y is an M-by-(P-
1) matrix. Each column in Y represents the result obtained by cancelling the two
successive pulses.

+ If PreDopplerOutput is false, Y contains the result of applying an FFT-based
Doppler filter to the pre-Doppler data. The targeting Doppler is the Doppler property
value. Y is a column vector of length M.

w

Processing weights the pulse canceller used to obtain the pre-Doppler data. The
dimensions of W depend on the PreDopplerOutput property of H:

+ If PreDopplerOutput is true, W is a 2N-by-(P-1) matrix. The columns in W
correspond to successive pulses in X.

+ If PreDopplerOutput is False, W is a column vector of length (N*P).

Examples

Process the data cube using a DPCA processor. The weights are calculated for the 71st
cell of a collected data cube. The look direction is [0; 0] degrees and the Doppler is 12980
Hz.

load STAPExampleData; % load data

Hs = phased.DPCACanceller("SensorArray”,STAPEX_HArray,. ..
"PRF",STAPEX_PRF, ...
"PropagationSpeed”,STAPEx_PropagationSpeed, ...
"OperatingFrequency”,STAPEX_OperatingFrequency, ...
"WeightsOutputPort” ,true, ...
"DirectionSource”, "Input port", ...
"DopplerSource”, "Input port*®);

[y.w] = step(Hs,STAPEx_ReceivePulse,71,[0; 0],12980);

See Also

phitheta2azel | uv2azel

phased.ElementDelay System object

phased.ElementDelay System object

Package: phased

Sensor array element delay estimator

Description
The ElementDelay object calculates the signal delay for elements in an array.

To compute the signal delay across the array elements:

1 Define and set up your element delay estimator. See “Construction” on page 1-531.

2 Call step to estimate the delay according to the properties of
phased.ElementDelay. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.ElementDelay creates an element delay estimator System object, H. The
object calculates the signal delay for elements in an array when the signal arrives the
array from specified directions. By default, a 2-element uniform linear array (ULA) is
used.

H = phased.ElementDelay(Name,Value) creates object, H, with each specified

property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Namel,Valuel,...,NameN,ValueN).

Properties

SensorArray

Handle to sensor array used to calculate the delay

Specify the sensor array as a handle. The sensor array must be an array object in the

phased package. The array cannot contain subarrays.

1-531

1 Alphabetical List

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

Methods

clone
Create element delay object with same
property values
getNumInputs
Number of expected inputs to step method
getNumOutputs
Number of outputs from step method
isLocked
Locked status for input attributes and
nontunable properties
release
Allow property value and input
characteristics changes
step
Calculate delay for elements
Examples

Element Delay for Uniform Linear Array

Calculate the element delay for a uniform linear array when the input is impinging on
the array from 30 degrees azimuth and 20 degrees elevation.

ha = phased.ULA("NumElements”,4);
hed = phased.ElementDelay("SensorArray”,ha);

1-532

phased.ElementDelay System object

tau = step(hed, [30;20])

References
[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also

phased.ArrayGain | phased.ArrayResponse | phased.SteeringVector

1-533

1 Alphabetical List

clone

System object: phased.ElementDelay
Package: phased

Create element delay object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1-534

getNumlnputs

getNumlinputs

System object: phased.ElementDelay
Package: phased

Number of expected inputs to step method

Syntax

N = getNumlnputs(H)

Description

N = getNumlnputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) you must use when calling the step method. This value
changes when you alter properties that turn inputs on or off.

1-535

1 Alphabetical List

getNumOutputs

System object: phased.ElementDelay
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)
Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1-536

isLocked

isLocked

System object: phased.ElementDelay
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description
TF = isLocked(H) returns the locked status, TF, for the ElementDelay System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

1-537

1 Alphabetical List

release

System object: phased.ElementDelay
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1-538

step

step

System object: phased.ElementDelay
Package: phased

Calculate delay for elements

Syntax

TAU = step(H,ANG)

Description

TAU = step(H,ANG) returns the delay TAU of each element relative to the array’s
phase center for the signal incident directions specified by ANG.

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments
H

Element delay object.
ANG

Signal incident directions in degrees. ANG can be either a 2-by-M matrix or a row vector
of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the
form [azimuth; elevation]. The azimuth angle must be between —180 and 180 degrees,
inclusive. The elevation angle must be between —90 and 90 degrees, inclusive.

1-539

1 Alphabetical List

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

Output Arguments
TAU

Delay in seconds.TAU is an N-by-M matrix, where N is the number of elements in
the array. Each column of TAU contains the delays of the array elements for the
corresponding direction specified in ANG.

Examples

Element Delay for Uniform Linear Array

Calculate the element delay for a uniform linear array when the input is impinging on
the array from 30 degrees azimuth and 20 degrees elevation.

ha = phased.ULA("NumElements”,4);

hed = phased.ElementDelay("SensorArray”,ha);
tau = step(hed, [30;20])
See Also

phitheta2azel | uv2azel

1-540

phased.ESPRITEstimator System object

phased.ESPRITEstimator System object

Package: phased

ESPRIT direction of arrival (DOA) estimator

Description

The ESPRITEstimator object computes a estimation of signal parameters via rotational
invariance (ESPRIT) direction of arrival estimate.

To estimate the direction of arrival (DOA):

1 Define and set up your DOA estimator. See “Construction” on page 1-541.

2 Call step to estimate the DOA according to the properties of
phased.ESPRITEstimator. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.ESPRITEstimator creates an ESPRIT DOA estimator System object, H.
The object estimates the signal's direction-of-arrival (DOA) using the ESPRIT algorithm
with a uniform linear array (ULA).

H = phased.ESPRITEstimator(Name,Value) creates object, H, with each specified

property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Namel,Valuel,...,NameN,ValueN).

Properties

SensorArray
Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a phased.ULA object.

1-541

1 Alphabetical List

1-542

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.
Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8
ForwardBackwardAveraging
Perform forward-backward averaging

Set this property to true to use forward-backward averaging to estimate the covariance
matrix for sensor arrays with conjugate symmetric array manifold.

Default: false

SpatialSmoothing

Spatial smoothing

Specify the number of averaging used by spatial smoothing to estimate the covariance
matrix as a nonnegative integer. Each additional smoothing handles one extra coherent
source, but reduces the effective number of element by 1. The maximum value of this
property is M—2, where M is the number of sensors.

Default: O, indicating no spatial smoothing

NumSignalsSource

Source of number of signals

phased.ESPRITEstimator System object

Specify the source of the number of signals as one of "Auto” or "Property”. If you set
this property to "Auto”, the number of signals is estimated by the method specified by
the NumSignalsMethod property.

Default: "Auto*®
NumSignalsMethod
Method to estimate number of signals

Specify the method to estimate the number of signals as one of "AIC" or "MDL". The
"AIC" uses the Akaike Information Criterion and the "MDL" uses Minimum Description
Length criterion. This property applies when you set the NumSignalsSource property to
"Auto”.

Default: "AIC*
NumSignals
Number of signals

Specify the number of signals as a positive integer scalar. This property applies when you
set the NumSignalsSource property to "Property”

Default: 1
Method
Type of least squares method

Specify the least squares method used for ESPRIT as one of "TLS" or "LS". "TLS" refers
to total least squares and "LS"refers to least squares.

Default: "TLS"
RowWeighting
Row weighting factor

Specify the row weighting factor for signal subspace eigenvectors as a positive integer
scalar. This property controls the weights applied to the selection matrices. In most cases
the higher value the better. However, it can never be greater than (N-1)/2 where N is
the number of elements of the array.

1-543

1 Alphabetical List

1-544

Default: 1

Methods

clone
Create ESPRIT DOA estimator object with
same property values
getNumlInputs
Number of expected inputs to step method
getNumOQOutputs
Number of outputs from step method
isLocked
Locked status for input attributes and
nontunable properties
release
Allow property value and input
characteristics changes
step
Perform DOA estimation
Examples

Estimate the DOAs of two signals received by a standard 10-element ULA with element
spacing 1 meter. The antenna operating frequency is 150 MHz. The actual direction of
the first signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the
second signal is 45 degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).";
X1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA("NumElements®,10, "ElementSpacing”,1);

ha.Element._FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(ha, [x1 x2],[10 20;45 60]",fc);

rng default;

noise = 0.1/sgrt(2)*(randn(size(x))+li*randn(size(x)));

hdoa = phased.ESPRITEstimator("SensorArray”,ha, ...
"OperatingFrequency”,fc);

phased.ESPRITEstimator System object

doas = step(hdoa,x+noise);
az = broadside2az(sort(doas),[20 60])

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also

broadside2az

1-545

1 Alphabetical List

clone

System object: phased. ESPRITEstimator
Package: phased

Create ESPRIT DOA estimator object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1-546

getNumlnputs

getNumlinputs

System object: phased. ESPRITEstimator
Package: phased

Number of expected inputs to step method

Syntax

N = getNumlnputs(H)

Description

N = getNumlnputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) you must use when calling the step method. This value
changes when you alter properties that turn inputs on or off.

1-547

1 Alphabetical List

getNumOutputs

System object: phased. ESPRITEstimator
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)
Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1-548

isLocked

isLocked

System object: phased. ESPRITEstimator
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description

TF = isLocked(H) returns the locked status, TF, for the ESPRITEstimator System
object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

1-549

1 Alphabetical List

release

System object: phased. ESPRITEstimator
Package: phased

Allow property value and input characteristics changes

Syntax

release(H)

Description

release(H) releases system resources (such as memory, file handles or hardware
connections) and allows all properties and input characteristics to be changed.

Note: You can use the release method on a System object in code generated from
MATLAB, but once you release its resources, you cannot use that System object again.

1-550

step

step

System object: phased. ESPRITEstimator
Package: phased

Perform DOA estimation

Syntax

ANG = step(H,X)

Description

ANG = step(H,X) estimates the DOAs from X using the DOA estimator, H. X is a
matrix whose columns correspond to channels. ANG is a row vector of the estimated
broadside angles (in degrees).

Note: The object performs an initialization the first time the step method is executed.
This initialization locks nontunable properties and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Estimate the DOAs of two signals received by a standard 10-element ULA with element
spacing 1 meter. The antenna operating frequency is 150 MHz. The actual direction of
the first signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the
second signal is 45 degrees in azimuth and 60 degrees in elevation.

fs = 8000; t = (0:1/fs:1).";
X1 = cos(2*pi*t*300); x2 = cos(2*pi*t*400);
ha = phased.ULA("NumElements®,10, "ElementSpacing”,1);

ha.Element._FrequencyRange = [100e6 300e6];
fc = 150e6;

1-551

1 Alphabetical List

x = collectPlaneWave(ha, [x1 x2],[10 20;45 60]",fc);

rng default;

noise = 0.1/sgrt(2)*(randn(size(x))+li*randn(size(x)));

hdoa = phased.ESPRITEstimator("SensorArray”,ha, ...
"OperatingFrequency”,fc);

doas = step(hdoa,x+noise);

az = broadside2az(sort(doas),[20 60])

1-552

phased. FMCWWaveform System object

phased.FMCWWaveform System object

Package: phased

FMCW Waveform

Description

The FMCWWaveform object creates an FMCW (frequency modulated continuous wave)
waveform.

To obtain waveform samples:

Define and set up your FMCW waveform. See “Construction” on page 1-553.

2 Call step to generate the FMCW waveform samples according to the properties
of phased . FMCWWaveform. The behavior of step is specific to each object in the
toolbox.

Construction

H = phased.FMCWWaveform creates an FMCW waveform System object, H. The object
generates samples of an FMCW waveform.

H = phased.FMCWWaveform(Name,Value) creates an FMCW waveform object, H,
with additional options specified by one or more Name,Value pair arguments. Name
is a property name, and Value is the corresponding value. Name must appear inside

single quotes (" *). You can specify several name-value pair arguments in any order as
Namel,Valuel,..,NameN,ValueN

Properties

SampleRate

Sample rate

1-553

1 Alphabetical List

1-554

Specify the same rate, in hertz, as a positive scalar. The default value of this property
corresponds to 1 MHz.

The quantity (SampleRate _.* SweepTime) is a scalar or vector that must contain only
integers.

Default: 1e6
SweepTime
Duration of each linear FM sweep

Specify the duration of the upsweep or downsweep, in seconds, as a row vector of positive,
real numbers. The default value corresponds to 100 us.

If SweepDirectionis "Triangle”, the sweep time is half the sweep period because
each period consists of an upsweep and a downsweep. If SweepDirectionis "Up" or
"Down*®, the sweep time equals the sweep period.

The quantity (SampleRate .* SweepTime) is a scalar or vector that must contain only
integers.

To implement a varying sweep time, specify SweepTime as a nonscalar row vector. The
waveform uses successive entries of the vector as the sweep time for successive periods of
the waveform. If the last element of the vector is reached, the process continues cyclically
with the first entry of the vector.

If SweepTime and SweepBandwidth are both nonscalar, they must have the same
length.

Default: 1e-4
SweepBandwidth
FM sweep bandwidth

Specify the bandwidth of the linear FM sweeping, in hertz, as a row vector of positive,
real numbers. The default value corresponds to 100 kHz.

To implement a varying bandwidth, specify SweepBandwidth as a nonscalar row vector.
The waveform uses successive entries of the vector as the sweep bandwidth for successive

phased. FMCWWaveform System object

periods of the waveform. If the last element of the SweepBandwidth vector is reached,
the process continues cyclically with the first entry of the vector.

If SweepTime and SweepBandwidth are both nonscalar, they must have the same
length.

Default: 1e5

SweepDirection

FM sweep direction

Specify the direction of the linear FM sweep as one of "Up® | "Down”® | *Triangle-.
Default: "Up*®

Sweeplnterval

Location of FM sweep interval

If you set this property value to "Positive”, the waveform sweeps in the interval
between 0 and B, where B is the SweepBandwidth property value. If you set this
property value to "Symmetric”, the waveform sweeps in the interval between —B/2 and
B/2.

Default: "Positive”

OutputFormat

Output signal format

Specify the format of the output signal as one of "Sweeps*® or "Samples”. When you set
the OutputFormat property to "Sweeps”, the output of the step method is in the form
of multiple sweeps. In this case, the number of sweeps is the value of the NumSweeps
property. If the SweepDirection property is "Triangle”, each sweep is half a period.
When you set the OutputFormat property to "Samples®, the output of the step method
1s in the form of multiple samples. In this case, the number of samples is the value of the

NumSamples property.

Default: "Sweeps”

1-555

1 Alphabetical List

1-556

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method as a positive integer.
This property applies only when you set the OutputFormat property to "Samples®.

Default: 100

NumSweeps

Number of sweeps in output

Specify the number of sweeps in the output of the step method as a positive integer.
This property applies only when you set the OutputFormat property to "Sweeps®.

Default: 1

Methods

clone

getNumInputs
getNumOutputs

isLocked

plot

release

reset

step

Create FMCW waveform object with same
property values

Number of expected inputs to step method
Number of outputs from step method

Locked status for input attributes and
nontunable properties

Plot FMCW waveform

Allow property value and input
characteristics changes

Reset states of FMCW waveform object

Samples of FMCW waveform

phased. FMCWWaveform System object

Definitions

Triangle Sweep

In each period of a triangle sweep, the waveform sweeps up with a slope of B/T and then
down with a slope of —B/T. B is the sweep bandwidth, and 7 is the sweep time. The sweep
period is 27.

Frequency

v

T T Time

Upsweep

In each period of an upsweep, the waveform sweeps with a slope of B/T. B is the sweep
bandwidth, and 7 is the sweep time.

Frequency
B
|,
T Time"
Downsweep

In each period of a downsweep, the waveform sweeps with a slope of —B/T. B is the sweep
bandwidth, and T'is the sweep time.

Frequency

T Time

1-557

1 Alphabetical List

Examples
FMCW Waveform Plot

Create and plot an upsweep FMCW waveform.

hw = phased.FMCWWaveform("SweepBandwidth®,1e5, ...
"OutputFormat®, "Sweeps”, "NumSweeps* ,2);
plot(hw);

u Figure 1 = | = 2%

File Edit View Inset Tools Desktop Window Help o
ﬁ_bl_rjlﬂalﬂ %+_\@@@£'@;DE m O

FMCW waveform: real part, pulse 1

s

Amplitude (v}
=

Oy |

=
=
ra

Time (s) w10

L

Spectrogram of Triangle Sweep FMCW Waveform

Generate samples of a triangle sweep FMCW Waveform. Then, examine the sweep using
a spectrogram.

1-558

phased. FMCWWaveform System object

hw = phased.FMCWWaveform(" SweepBandwidth®,1le7, ...
"SampleRate” ,2e7, "SweepDirection®, "Triangle®, ...
"NumSweeps*,2);

x = step(hw);

spectrogram(x,32,16,32,hw.SampleRate, "yaxis®);

-

nFigurel = | = 2
File Edit View Inset Tools Desktop Window Help o

Ddde | | RAODE LS| 0EH D

&
] 10

18:
16:
14
12 | L 4l |
10:

Freguency (Hz)

= = =

il ||}
........................ LA™
27y g7 g

1 5 =)
Tirne

. Automotive Adaptive Cruise Control Using FMCW Technology

References

[1] Issakov, Vadim. Microwave Circuits for 24 GHz Automotive Radar in Silicon-based
Technologies. Berlin: Springer, 2010.

1-559

../examples/automotive-adaptive-cruise-control-using-fmcw-technology.html

1 Alphabetical List

[2] Skolnik, ML.I. Introduction to Radar Systems. New York: McGraw-Hill, 1980.

See Also

phased.LinearFMWaveform | range2bw | range2time | time2range

1-560

clone

clone

System object: phased. FMCWWaveform
Package: phased

Create FMCW waveform object with same property values

Syntax

C = clone(H)

Description

C = clone(H) creates an object, C, having the same property values and same states as
H. If H is locked, so is C.

1-561

1 Alphabetical List

getNumlinputs

System object: phased. FMCWWaveform
Package: phased

Number of expected inputs to step method

Syntax

N = getNumlnputs(H)

Description

N = getNumlnputs(H) returns a positive integer, N, representing the number of inputs
(not counting the object itself) you must use when calling the step method. This value
changes when you alter properties that turn inputs on or off.

1-562

getNumOutputs

getNumOutputs

System object: phased. FMCWWaveform
Package: phased

Number of outputs from step method

Syntax

N = getNumOutputs(H)
Description

N = getNumOutputs(H) returns the number of outputs, N, from the step method. This
value changes when you alter properties that turn outputs on or off.

1-563

1 Alphabetical List

1-564

isLocked

System object: phased. FMCWWaveform
Package: phased

Locked status for input attributes and nontunable properties

Syntax

TF = isLocked(H)

Description
TF = isLocked(H) returns the locked status, TF, for the FMCWWaveform System object.

The isLocked method returns a logical value that indicates whether input attributes
and nontunable properties for the object are locked. The object performs an internal
initialization the first time the step method is executed. This initialization locks
nontunable properties and input specifications, such as dimensions, complexity, and data
type of the input data. After locking, the isLocked method returns a true value.

p|ot

plot

System object: phased. FMCWWaveform
Package: phased

Plot FMCW waveform

Syntax

plot(Hwav)
plot(Hwav,Name,Value)
plot(Hwav,Name,Value,LineSpec)

h = plot(___)

Description
plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options specified by one
or more Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line style, or marker
options as are available in the MATLAB plot function.

h = plot() returns the line handle in the figure.

Input Arguments

Hwav

Waveform object. This variable must be a scalar that represents a single waveform
object.

LineSpec

String that specifies the same line color, style, or marker options as are available in the
MATLAB plot function. If you specify a PlotType value of "complex”, then LineSpec
applies to both the real and imaginary subplots.

1-565

1 Alphabetical List

Default: "b*

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

"PlotType*

Specifies whether the function plots the real part, imaginary part, or both parts of the
waveform. Valid values are "real ", "imag”, and "complex”.

Default: "real *
"Sweepldx*®
Index of the sweep to plot. This value must be a positive integer scalar.

Default: 1

Output Arguments

h

Handle to the line or lines in the figure. For a PlotType value of "complex”, his a
column vector. The first and second elements of this vector